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EXPERIENCE 
Southern Alliance 
for Clean Energy 

Director of Research, Asheville, North Carolina and Washington, DC, 2007 – present 

 Manage technical and regulatory advocacy

 Conduct supporting research and policy development across all program areas

Galveston-Houston 
Association for 
Smog Prevention 

Executive Director, Houston, Texas, 2001 – 2006 

 Member, Regional Air Quality Planning Committee

 Member, Transportation Policy Technical Advisory Committee

 Member, Steering Committee, TCEQ Interim Science Committee

 Awards & recognition from the City of Houston, Houston Press, and environmental groups 

The Goodman 
Corporation 

Senior Associate, Houston, Texas, 2000 – 2001 

 Transportation and Urban Planning Consulting

 Project Manager, Houston Main Street Corridor

 Project Manager, Houston Downtown Circulation Study

 Project Manager, Austin Corridor Planning

 Project Manager, Ft. Worth Berry Street Corridor Initiative

Florida Legislature Senior Legislative Analyst and Technology Projects Coordinator, Office of Program Policy 
Analysis and Government Accountability, Tallahassee, Florida, 1997- 1999 

 Coordinator, Florida Government Accountability Report, 1999

 Coordinator, Project Management Software Implementation, 1999

 Creator and Editor, Florida Monitor Weekly, 1998 - 99

 Author or team member for reports on water supply policy, environmental permitting,
community development corporations, school district financial management and other
issues – most recommendations implemented by the 1998 and 1999 Florida Legislatures

Florida State 
University 

Environmental Management Consultant, Tallahassee, Florida, 1997 

 Project staff, Florida Assessment of Coastal Trends, 1997

Houston Advanced 
Research Center 

Research Associate, Center for Global Studies, The Woodlands, Texas, 1992 - 96 

 Coordinator, Houston Environmental Foresight, 1993 - 96

 Coordinator, Rio Grande/Rio Bravo Basin Initiative, 1992 - 94

 Secretary, Task Force on Climate Change in Texas, 1992 - 94

 Researcher, Policy Options: Responding to Climate Change in Texas, 1992 - 93

US Environmental 
Protection Agency 

Student Assistant, Climate Change Division, Washington, DC, 1991 - 92 

 Special Achievement Award, 1991

EDUCATION 
Harvard University Master in Public Policy, John F. Kennedy School of Government, 1992 

 Concentration areas: Environment, negotiation, economic and analytic methods

Rice University Bachelor of Arts, conferred cum laude, 1990 

 Majors: Physics (with honors) and history

Additional Training 
and Experience 

Spanish language; Advanced computer skills; Served and led political committees for the 
Sierra Club and Clean Water Action; Certified Master Wildlife Conservationist, Leon County 
Extension Service 

PUBLICATIONS 
Expert Witness 
Testimony 

Hamilton Davis and John D. Wilson, Joint Direct Testimony on Behalf of South Carolina 
Coastal Conservation League and Southern Alliance for Clean Energy, In the Matter of Joint 
Application of Duke Energy Carolinas, LLC and North Carolina Electric Membership 
Corporation for a Certificate of Environmental Compatibility and Public Convenience and 
Necessity for the Construction and Operation of a 750MW Combined Generating Plant Near 
Anderson, SC, South Carolina Public Service Commission Docket No. 2013-392-E (December 
10, 2013). 

John D. Wilson, Direct Testimony on Behalf of Southern Alliance for Clean Energy, In the 
Matters of Georgia Power Company’s 2013 Integrated Resource Plan and Application for 
Decertification of Plant Branch Units 3 and 4, Plant McManus Units 1 and 2, Plant Kraft Units 
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1-4, Plant Yates Units 1-05, Plant Boulevard Units 2 and 3, and Plant Bowen Unit 6, Georgia 
Public Service Commission Docket No. 36498 (May 10, 2013). 

John D. Wilson, allowable ex parte briefing on behalf of Southern Alliance for Clean Energy, 
South Carolina Coastal Conservation League, and Upstate Forever, in Progress Energy 
Carolinas, Incorporated’s Integrated Resource Plan (IRP), South Carolina Public Service 
Commission Docket NO. 2011-8-E and in Duke Energy Carolinas, LLC – 2011 Integrated 
Resource Plan, South Carolina Public Service Commission Docket NO. 2011-10-E (December 
21, 2011). 

John D. Wilson, allowable ex parte briefing on behalf of Southern Alliance for Clean Energy, 
South Carolina Coastal Conservation League, and Upstate Forever, in South Carolina Electric 
& Gas Company’s Integrated Resource Plan, South Carolina Public Service Commission 
Docket NO. 2011-9-E (June 1, 2011). 

John D. Wilson, Direct Testimony on Behalf of Southern Alliance for Clean Energy, In the 
Matters of Georgia Power Company’s Application for Certification of its Demand Side 
Management Program, Georgia Public Service Commission Docket No. 31082 (May 7, 2010). 

John D. Wilson, Direct Testimony on Behalf of Southern Alliance for Clean Energy, In the 
Matters of Georgia Power Company’s Application for Approval of its 2010 Integrated Resource 
Plan, Georgia Public Service Commission Docket No. 31081 (May 7, 2010). 

John D. Wilson, Direct Testimony on Behalf of Environmental Defense Fund, The Sierra Club, 
Southern Alliance for Clean Energy, and the Southern Environmental Law Center, In the 
Matter of Investigation of Integrated Resource Planning in North Carolina – 2009, North 
Carolina Utilities Commission Docket No. E-100, Sub 124 (February 19, 2010). 

John D. Wilson, Direct Testimony on Behalf of Environmental Defense Fund, the Natural 
Resources Defense Council, the South Carolina Coastal Conservation League, Southern 
Alliance for Clean Energy, and the Southern Environmental Law Center, Application of Duke 
Energy Carolinas, LLC for Authority to Adjust and Increase Its Electric Rate and Charges, 
South Carolina Public Service Commission Docket No. 2009-226-E (November 6, 2009). 

John D. Wilson, Direct Testimony & Exhibits on behalf of Southern Alliance for Clean Energy 
and the Natural Resources Defense Council in RE: Commission Review of Numeric 
Conservation Goals Florida Power & Light Company, Florida Public Service Commission 
Docket No. 080407-EG, also filed in Dockets 080408-EG through 080413-EG (July 6, 2009). 

John D. Wilson, Testimony on behalf of Environmental Defense Fund, Natural Resources 
Defense Council, Southern Alliance for Clean Energy, and Southern Environmental Law 
Center in Application of Duke Energy Carolinas, Inc. for Approval of Save-a-Watt Approach, 
Energy Efficiency Rider and Portfolio of Energy Efficiency Programs, North Carolina Utilities 
Commission Docket No. E-7, Sub 831 (June 19, 2009). 

John D. Wilson, Surrebuttal Testimony on Behalf of Environmental Defense, the South 
Carolina Coastal Conservation League, Southern Alliance For Clean Energy and the Southern 
Environmental Law Center, In the Matter of Application of Duke Energy Carolinas, LLC for 
Approval of Energy Efficiency Plan Including an Energy Efficiency Rider and Portfolio of 
Energy Efficiency Programs, South Carolina Public Service Commission Docket No. 2007-
358-E (January 28, 2008). 

Comments and 
Presentations 
Related to Electric 
Utilities 
(Lead author or 
significant contributor) 

Southern Alliance for Clean Energy et al, Shawnee Fossil Plant Units 1 and 4, Comments on 
the Draft Environmental Assessment, submitted to Tennessee Valley Authority (December 9, 
2014). 

Southern Alliance for Clean Energy, Sierra Club, and South Carolina Coastal Conservation 
League, comments filed In the Matter of Rulemaking Proceeding to Consider Revisions to 
Commission Rule R8-60 on Integrated Resource Planning, North Carolina Utilities 
Commission, Docket No. E-100, Sub 111 (December 8, 2014). 

South Carolina Coastal Conservation League and Southern Alliance for Clean Energy, 
comments filed In the Matter of Duke Energy Progress, Inc.’s Integrated Resource Plan, South 
Carolina Public Service Commission, Docket No. 2014-8-E (December 3, 2014). 

Southern Alliance for Clean Energy, Comments on the Environmental Protection Agency’s 
Proposed Clean Power Plan, Docket No. OAR-2013-0602 (December 1, 2014). 

John D. Wilson, “TVA IRP Update,” TenneSEIA Annual Meeting (November 19, 2014). 
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Southern Alliance for Clean Energy, Comments on Allen Fossil Plant Emission Control Project 
Draft Environmental Assessment, submitted to Tennessee Valley Authority (August 7, 2014). 

Southern Alliance for Clean Energy, TVA’s On-Peak Dependable Capacity Method, submitted 
to Tennessee Valley Renewable Information Exchange (June 10, 2014). 

Southern Alliance for Clean Energy, HVDC Wind Assessment, submitted to Tennessee Valley 
Renewable Information Exchange (May 27, 2014). 

Stephen A. Smith, letter to Tennessee Valley Renewable Information Exchange regarding in-
Valley wind resource data provided by Southern Wind Energy Association (May 20, 2014). 

Southern Alliance for Clean Energy, Tennessee Valley Utility-Scale Solar Assessment, 
submitted to Tennessee Valley Renewable Information Exchange (May 13, 2014). 

John D. Wilson, “Rates vs. Energy Efficiency,” 2013 ACEEE National Conference on Energy 
Efficiency as a Resource (September 2013). 

Sierra Club and Southern Alliance for Clean Energy, reply comments filed in Investigation of 
Integrated Resource Planning in North Carolina – 2012, North Carolina Utilities Commission 
Docket No. E-100, Sub 137 (March 6, 2013). 

Sierra Club and Southern Alliance for Clean Energy, comments filed in Investigation of 
Integrated Resource Planning in North Carolina – 2012, North Carolina Utilities Commission 
Docket No. E-100, Sub 137 (February 5, 2013). 

South Carolina Coastal Conservation League and Southern Alliance for Clean Energy, 
comments filed in Progress Energy Carolinas, LLC’s Integrated Resource Plan, South Carolina 
Public Service Commission Docket NO. 2012-8-E (January 25, 2013). 

South Carolina Coastal Conservation League, Southern Alliance for Clean Energy, and 
Upstate Forever, comments filed in Duke Energy Carolinas, LLC’s Integrated Resource Plan, 
South Carolina Public Service Commission Docket NO. 2012-10-E (December 6, 2012). 

Southern Alliance for Clean Energy, comments filed in Investigation of Integrated Resource 
Planning in North Carolina – 2010-2011, North Carolina Utilities Commission Docket No. E-
100, Sub 128 (January 13, 2012). 

Southern Alliance for Clean Energy, and South Carolina Coastal Conservation League, 
comments filed in Progress Energy Carolinas, Incorporated’s Integrated Resource Plan (IRP), 
South Carolina Public Service Commission Docket NO. 2011-8-E (October 31, 2011). 

Southern Alliance for Clean Energy, South Carolina Coastal Conservation League, and 
Upstate Forever, comments filed in Duke Energy Carolinas, LLC’s Integrated Resource Plan, 
South Carolina Public Service Commission Docket NO. 2011-10-E (October 31, 2011). 

Southern Alliance for Clean Energy, comments on Tennessee Valley Authority’s Renewable 
Standard Offer, submitted to Tennessee Valley Authority (September 6, 2011). 

Southern Alliance for Clean Energy, South Carolina Coastal Conservation League, and 
Upstate Forever, comments filed in South Carolina Electric & Gas Company’s Integrated 
Resource Plan, South Carolina Public Service Commission Docket NO. 2011-9-E (April 15, 
2011). 

Southern Alliance for Clean Energy, comments filed in Investigation of Integrated Resource 
Planning in North Carolina – 2010, North Carolina Utilities Commission Docket No. E-100, Sub 
128 (February 10, 2011). 

John D. Wilson, “Energy Efficiency Delivers Growth and Savings for Florida,” testimony before 
Energy & Utilities Subcommittee, Florida House of Representatives (February 2011). 

Southern Alliance for Clean Energy, comments filed in RE: Petition for Approval of Demand-
Side Management Plan of Progress Energy Florida, Florida Public Service Commission 
Docket No. 100160-EG (June 3, 2011). 

Southern Alliance for Clean Energy, comments filed in RE: Petition for Approval of Demand-
Side Management Plan of Progress Energy Florida, Florida Public Service Commission 
Docket No. 100160-EG, also filed in Docket No. 100155-EG (April 25, 2011). 

Southern Alliance for Clean Energy, comments filed in RE: Petition for Approval of Demand-
Side Management Plan of Gulf Power Company, Florida Public Service Commission Docket 
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No. 100154-EG, also filed in Dockets 100155, 59, and 60-EG (December 22, 2010). 

Environmental Defense Fund, Southern Alliance for Clean Energy, and Southern 
Environmental Law Center, reply comments in Rulemaking Proceeding to Implement Session 
Law 2007-397, North Carolina Utilities Commission Docket No. E-100, Sub 113 (November 
19, 2010). 

Southern Alliance for Clean Energy, Comments in Response to Tennessee Valley Authority’s 
November 16, 2010 Release of its Draft Integrated Resource Plan and Accompanying 
Environmental Impact Statement (No. 20100379) for Public Review and Comment (November 
15, 2010). 

Environmental Defense Fund, Southern Alliance for Clean Energy, and Southern 
Environmental Law Center, comments in Rulemaking Proceeding to Implement Session Law 
2007-397, North Carolina Utilities Commission Docket No. E-100, Sub 113 (October 15, 2010). 

Environmental Defense Fund, Southern Alliance for Clean Energy, and Southern 
Environmental Law Center, comments in Rulemaking Proceeding to Implement Session Law 
2007-397, North Carolina Utilities Commission Docket No. E-100, Sub 113 (October 4, 2010). 

South Carolina Coastal Conservation League and Southern Alliance for Clean Energy, 
comments filed In the Matter of Duke Energy Carolinas, LLC’s Integrated Resource Plan, 
South Carolina Public Service Commission, Docket No. 2014-10-E (November 3, 2014). 

Southern Alliance for Clean Energy and Environmental Defense Fund, statement of position 
letter in Application for Residential Retrofit and Home Energy Comparison Report Pilot 
Programs, North Carolina Utilities Commission Dockets Nos. E-7 Sub 952 and Sub 954 
(September 17, 2010). 

John D. Wilson, “Energy Efficiency: The Southeast Considers its Options,” NAESCO 
Southeast Regional Workshop (September 2010). 

Southern Alliance for Clean Energy, “SACE’s Response to Progress Energy Florida’s 
Response to SACE Comments,” comments filed in RE: Petition for Approval of Demand-Side 
Management Plan of Progress Energy Florida, Florida Public Service Commission Docket No. 
100160-EG (August 3, 2010). 

Southern Alliance for Clean Energy, comments filed in RE: Petition for Approval of Demand-
Side Management Plan of Gulf Power Company, Florida Public Service Commission Docket 
No. 100154-EG, also filed in Dockets 100155, 57, 59, 60 and 61-EG (July 14, 2010). 

John D. Wilson, “Bringing Energy Efficiency to Southerners,” Environmental and Energy Study 
Institute panel on “Energy Efficiency in the South” (April 10, 2010). 

John D. Wilson, “The Changing Face of Energy Supply in Florida (and the Southeast),” 37th 
Annual PURC Conference (February 2010). 

John D. Wilson, “Florida Energy Policy Discussion,” testimony before Energy & Utilities Policy 
Committee, Florida House of Representatives (January 2010). 

John D. Wilson, “Building the Energy Efficiency Resource for the TVA Region,” presentation 
on behalf of Southern Alliance for Clean Energy to the Tennessee Valley Authority Integrated 
Resource Planning Stakeholder Review Group (December 10, 2009). 

John D. Wilson, “An Advocates Perspective on the Duke Save-a-Watt Approach,” ACEEE 5th 
National Conference on Energy Efficiency as a Resource (September 2009). 

Southern Alliance for Clean Energy, comments in response to Tennessee Valley Authority 
(TVA) Staff Report on Preliminary Recommendations on the Four PURPA Standards Under 
Section 111(d) of the Public Utility Regulatory Policies Act Pursuant to the Energy 
Independence and Security Act of 2007 (July 27, 2009). 

Southern Alliance for Clean Energy, Comments in RE: Establishment of Rule on Renewable 
Portfolio Standard, Florida Public Service Commission Docket No. 080503-EI (December 8, 
2008). 

Southern Alliance for Clean Energy, Comments in RE: Establishment of Rule on Renewable 
Portfolio Standard, Florida Public Service Commission Docket No. 080503-EI (September 5, 
2008). 

Southern Alliance for Clean Energy, Comments on July 11, 2008 RPS Workshop, Florida 
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Public Service Commission undocketed workshop (July 2008). 

Environmental Defense Fund, Natural Resources Defense Council, Southern Alliance for 
Clean Energy, and Southern Environmental Law Center, further comments in Investigation of 
Rate Structures, Policies and Measures that Promote a Mix of Generation and Demand 
Reduction for Electric Power Suppliers in North Carolina, North Carolina Utilities Commission 
Docket No. E-100, Sub 116 (June 23, 2008). 

Southern Alliance for Clean Energy, comments on Energy Efficiency and Demand Response 
Plan, submitted to Tennessee Valley Authority (May 6, 2008). 

Southern Alliance for Clean Energy, comments on Renewable Energy and Clean Energy 
Assessment, submitted to Tennessee Valley Authority (May 6, 2008). 

John D. Wilson, “Utility-Scale Renewable Energy,” presentation on behalf of Southern Alliance 
for Clean Energy to the Board of the Tennessee Valley Authority (March 5, 2008). 

John D. Wilson, “Energy Efficiency: Regulating Cost-Effectiveness,” Florida Public Service 
Commission undocketed workshop (April 25, 2008). 

Environmental Defense Fund, Natural Resources Defense Council, Southern Alliance for 
Clean Energy, and Southern Environmental Law Center, initial comments in Investigation of 
Rate Structures, Policies and Measures that Promote a Mix of Generation and Demand 
Reduction for Electric Power Suppliers in North Carolina, North Carolina Utilities Commission 
Docket No. E-100, Sub 116 (March 20, 2008). 

John D. Wilson, “Clean Energy Solutions for Western North Carolina,” presentation to 
Progress Energy Carolinas WNC Community Energy Advisory Council (February 7, 2008). 

Environmental Defense, Southern Alliance for Clean Energy, and Southern Environmental Law 
Center, reply comments in Rulemaking Proceeding to Implement Session Law 2007-397, 
North Carolina Utilities Commission Docket No. E-100, Sub 113 (December 13, 2007). 

Environmental Defense, Southern Alliance for Clean Energy, and Southern Environmental Law 
Center, comments in Rulemaking Proceeding to Implement Session Law 2007-397, North 
Carolina Utilities Commission Docket No. E-100, Sub 113 (November 12, 2007). 

Environmental Defense, Southern Alliance for Clean Energy, and Southern Environmental Law 
Center, comments in Rulemaking Proceeding to Implement Session Law 2007-397, North 
Carolina Utilities Commission Docket No. E-100, Sub 113 (September 21, 2007). 

Southern Alliance for Clean Energy and the Natural Resources Defense Council, Comments 
and Suggestions of the Southern Alliance for Clean Energy, and of the Natural Resources 
Defense Council, Pertaining to Rulemaking on a Renewable Portfolio Standard, Florida Public 
Service Commission Undocketed Comments (September 2007). 

Published Papers, 
Reports and Books 

Southern Alliance for Clean Energy, Renewable Energy Standard Offer: A Tennessee Valley 
Authority Case Study (November 2012). 

Southern Alliance for Clean Energy, Recommendations For Feed-In-Tariff Program 
Implementation In The Southeast Region To Accelerate Renewable Energy Development 
(March 2011). 

John D. Wilson, Tom Franks and J. Richard Hornby, “Seeking Consistency in Performance 
Incentives for Utility Energy Efficiency Programs,” 2010 American Council for an Energy-
Efficient Economy Summer Study on Energy Efficiency in Buildings (August 2010). 

John D. Wilson, “Energy Efficiency Program Impacts and Policies in the Southeast,” Southern 
Alliance for Clean Energy (May 2009). 

Dennis Creech, Eliot Metzger, Samantha Putt Del Pino, John D. Wilson, Local Clean Power, 
World Resources Institute Issue Briefs (April 2009). 

Dennis Creech, Eliot Metzger, Samantha Putt Del Pino, John D. Wilson, Green in the Grid: 
Renewable Electricity Opportunities in the Southeast United States, World Resources Institute 
Issue Briefs (April 2009). 

Southern Alliance for Clean Energy, Yes We Can: Southern Solutions for a National 
Renewable Energy Standard (February 2009). 

Southern Alliance for Clean Energy, Cornerstones: Building a Secure Foundation for North 
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Carolina’s Energy Future (May 2008). 

Southern Alliance for Clean Energy, Bringing Clean Energy to the Southeastern United States: 
Achieving the Federal Renewable Energy Standard (February 2008). 

Galveston Houston Association for Smog Prevention, Whiners Matter! Citizen Complaints 
Lead to Improved Regional Air Quality Control (June 2006). 

Galveston Houston Association for Smog Prevention, Exceeding the Limit: Industry Violations 
of New Rule Almost Slid Under State’s Radar (January 2006). 

Galveston Houston Association for Smog Prevention, Mercury in Galveston and Houston Fish: 
Contamination by Neurotoxin Places Children at Risk (October 2004). 

Environmental Integrity Project and Galveston Houston Association for Smog Prevention, 
Who’s Counting: The Systematic Underreporting of Toxic Air Emissions (June 2004). 

Galveston Houston Association for Smog Prevention, Reducing Air Pollution From Houston-
Area School Buses (March 2004). 

Galveston Houston Association for Smog Prevention, Smoke in the Water: Air Pollution 
Hidden in the Water Vapor from Cooling Towers – Agencies Fail to Enforce Against Polluters 
(February 2004). 

Office of Program Policy Analysis and Government Accountability, Florida Water Policy: 
Discouraging Competing Applications for Water Permits; Encouraging Cost-Effective Water 
Development, Report No. 99-06 (August 1999). 

John D. Wilson, Janet E. Kohlhase, and Sabrina Strawn, “Quality of Life and Comparative Risk 
in Houston,” Urban Ecosystems, Vol. 3, Issue 2 (July 1999). 

Office of Program Policy Analysis and Government Accountability, Review of the Expedited 
Permitting Process Coordinated by the Governor’s Office of Tourism, Trade, and Economic 
Development, Report No. 98-17 (October 1998). 

Office of Program Policy Analysis and Government Accountability, Review of the Community 
Development Corporation Support and Assistance Program, Report No. 97-45 (February 
1998). 

Office of Program Policy Analysis and Government Accountability, Best Financial Management 
Practices for Florida School Districts, Report No. 97-08 (October 1997). 

Florida Coastal Management Program, Florida Assessment of Coastal Trends (June 1997). 

Houston Environmental Foresight Committee, Seeking Environmental Improvement, Houston 
Advanced Research Center (January 1996). 

Houston Environmental Foresight Science Panel, Houston Environment 1995, Houston 
Advanced Research Center (1996). 

Judith Clarkson, John D. Wilson and Wolfgang Roeseler, “Urban Areas,” in Gerald R. North, 
Jurgen Schmandt and Judith Clarson, The Impact of Global Warming on Texas: A Report of 
the Task Force on Climate Change in Texas (1995). 

Houston Advanced Research Center, Policy Options: Responding to Climate Change in 
Texas, US EPA and Texas Water Commission (October 1993). 

 

http://airalliancehouston.org/air_alliance_houston_reports/detail/whiners_matter_citizen_complaints_lead_to_improved_regional_air_qualit
http://airalliancehouston.org/air_alliance_houston_reports/detail/whiners_matter_citizen_complaints_lead_to_improved_regional_air_qualit
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Increased Levels of Renewable Energy Will Be Compatible with Reliable Electric 

Service in the Southeast 

Summary 
Utilities in the Southeast are beginning to consider deployment of variable renewable energy resources 

on their systems, with some proposals suggesting that 10-20% of annual electricity demand might be 

sourced from wind and solar in the next decade. Elsewhere in the country, technical experts have 

concluded that variable renewable energy resources can meet at least 50% of electric system demand 

using currently available technology and system management capabilities,, provided that utilities make 

“investment in additional distribution and transmission system infrastructure as well as changes in 

electric system operations, markets, and planning to achieve reliability.”1  Across much of the United 

States, these questions are systematically addressed through the planning processes of regional 

transmission operators (RTOs), independent system operators (ISOs) and super-regional planning 

organizations such as the Western Electricity Coordinating Council. 

However, in the Southeast, several large vertically-integrated utilities conduct their own resource 

adequacy, reliability and operational planning with minimal market exposure. Due to historically limited 

solar and wind development, vertically-integrated utilities in the Southeast have not provided analyses 

of renewable energy that are as comprehensive or similarly robust as those in RTO or ISO regions. While 

few of their planning studies have thoroughly examined renewable energy resources, these studies do 

often raise questions regarding renewable resource adequacy, reliability and flexibility. 

This study summarizes the information available from these utilities, and answers the following key 

questions with analysis that could be used in a variety of energy planning activities. 

1. How much conventional capacity can be replaced by:

 Solar photovoltaic (PV) power resources? For every 100 megawatts (MW) of solar power

resources, about 50-70 MW of conventional generation capacity can be avoided. The exact

value depends on the location and technology used.

 Southeastern wind power resources? For every 100 MW of wind resources generated in the

Southeast, the limited available data suggest 10-15 MW of conventional generation capacity can

be avoided. Both technology change and the lack of data suggest that these estimates are

subject to revision.

 Wind power imported via HVDC transmission? For every 100 MW of wind resources imported

into the Southeast via HVDC transmission, about 45-60 MW of conventional generation capacity

can be avoided. The exact value depends on the wind characteristics, the business model for the

1 Linvill, C., Migden-Ostrander, J. and Hogan, M., Clean Energy Keeps the Lights On, Regulatory Assistance Project 
(June 2014). 
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transmission provider, and the amount of “wheeling” from one utility system to another that is 

needed. 

2. Will these capacity values change if renewable energy penetration levels increase? Yes, if the 

Southeast deploys a mix of solar and wind resources to meet 10-20% of annual electricity demand, 

these values will change. For solar, the values would drop to 25-40 MW; for regional wind, the 

values would increase slightly; for HVDC wind imports, the values would drop to 20-40 MW per 100 

MW of conventional generation. 

3. Will renewable energy cause utility system reliability to decrease at: 

 Current or projected near-term penetration levels? No, while renewable energy resources are 

variable, they perform very well during high demand periods when utility systems need to use 

most of their generation resources. On average, regional solar and imported wind resources 

should generate at 50-60% dependable capacity factors during these hours in the Southeast. At 

current and near-term levels of renewable energy use, long-term modeling analysis indicates no 

increased reliability risks at the system level – even during hours in which renewable energy 

production might be low.  

 Significantly higher levels of renewable energy development? No, even if renewable energy is 

increased to meet 10-20% of annual electricity demand, reliability should be relatively 

unaffected on balance. At these higher levels of renewable energy use, there would be a 

balance of increased and decreased risks that utilities would need to study and monitor. Hours 

with increased reliability risks would occur very infrequently, roughly only one hour per year on 

average. However, that same level of renewable energy generation would actually increase the 

number of hours in which reliability is ensured by about 80 hours per year. 

4. Could solar power cause some utility systems to effectively shift from a summer to winter peak, 

thus negating its benefits during a “polar vortex” type event? Winter peaks in the Southeast are 

occasionally nearly as high as summer peaks. Nonetheless, even with several gigawatts (GW) of solar 

energy added to existing utility systems, winter peaks did not become the most challenging 

reliability condition in any of the utility systems we studied. It is important to study this potential 

effect in the context of other system resources. Because conventional generation operates more 

efficiently during winter peaking episodes, a system planned for summer peak will have more 

conventional capacity available in the winter to compensate. Furthermore, wind power produces 

very well during winter peaking episodes. In general, an optimized approach to resource, operation 

and reliability studies should be sufficient to plan for a “polar vortex” type event. 

5. Will conventional generation plants have to ramp up and down rapidly to balance variable 

renewable generation? Utility operators will not need to increase the ramping of conventional 

generation under current and projected near-term renewable energy penetration levels. Up to 

around 10% of energy supply, utility systems may actually be easier to operate, since solar energy in 

the Southeast is closely aligned with system peaks. While the transition point depends on the utility 

system and the resources applied, even at 10-20% of annual electricity demand, the California “duck 

curve” problem of high ramp rates for conventional generation is unlikely to appear in the 

Southeast. 
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These questions have been answered by matching industry-standard data about potential wind and 

solar generation to the historical generation data supplied by Duke Energy (in the Carolinas), Southern 

Company (including Alabama, Florida, Georgia and Mississippi subsidiaries), and the Tennessee Valley 

Authority (serving portions of seven Southeastern states). The methods applied in this analysis utilize 

industry-standard techniques, enhanced to more carefully examine reliability and capacity value 

concerns regarding renewable energy development in the Southeast. 

 

1. Dependable (on-peak) Capacity Values of Renewable Energy Resources in the Southeast2  
In determining whether a utility has adequate resources to meet its forecast system requirements, 

Southeastern utilities utilize a dependable capacity factor (DCF) for renewable energy resources. 

(Elsewhere these may be referred to as an on-peak capacity value, a generation capacity credit, or by 

some other nomenclature.) The DCF may be thought of as a “derating factor” which takes into account 

not only the output capabilities of a renewable energy resource, but also the usefulness of the resource 

output in meeting overall electric utility system reliability standards.3 Under current and projected near-

term penetration levels, this analysis demonstrated that a mix of renewable energy resources can be 

deployed in the Southeast using a DCF of approximately 50%. This means that utility operators would be 

able to assume that renewable energy resources reliably produce about half of the rated nameplate 

capacity during hours of peak electric demand. 

Each electric resource comes with its own operational constraints and capabilities, which are routinely 

quantified by utilities. Modern natural gas plants offer rapid start and turndown capabilities. Nuclear 

power output can typically be varied within a narrow band, but operational and financial considerations 

make it impractical to vary much with load on an hourly or even daily basis. Large steam plants (fossil 

and nuclear) require hours to start up, more hours to reach full outputs, and shut downs cover even 

more hours. Outputs from thermal generation resources are often higher in the winter, reflecting 

greater operating efficiencies due to cooler water and air temperatures. Each generating unit 

demonstrates an evolving forced outage rate reflecting its inherent reliability and the need for system 

redundancy. These and many other factors are properly quantified by utilities within the context of 

reserve margin and resource planning studies. 

In contrast to an evenhanded, data-driven approach, Southeastern utilities have sometimes emphasized 

the “operational limitations” of renewable energy in a less rigorous or systematic manner. For example, 

Duke Energy describes solar energy as a resource that:  

…cannot be dispatched to meet changing demand from customers all hours of the day and 

night, through all types of weather … by way of comparison: Solar energy’s equivalent full 

output is available approximately 20% of the time. Nuclear energy’s equivalent full output is 

available greater than 90% of the time. Natural gas combined cycle’s energy is available greater 

than 90% of the time. As a result, it can take 4 to 5 MW of installed solar generation to produce 

                                                           
2 See Attachment A for more detail on this topic. 
3 Styled after definition of ELCC, as described  by California Public Utilities Commission, Energy Division, Effective 
Load Carrying Capacity and Qualifying Capacity Calculation Methodology for Wind and Solar Resources, Staff 
Proposal, Resource Adequacy Proceeding R.11-10-023 (January 16, 2014), p. 1. 
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the same amount of energy that is available from a single MW of natural gas or nuclear 

generation.4 

Elsewhere in the same document, Duke Energy attributes a 45% DCF to solar energy, but its operational 

summary makes clear that the corporate view of solar is that of an impaired, barely relevant resource. 

While the energy produced by solar and wind resources is variable and not represented by its peak 

output, modern forecasting techniques and the geographic dispersal of these resources provide utilities 

with the opportunity to plan for and control gradual or even sudden changes in solar and wind power 

production.5  

Southeastern utilities appear to have adopted capacity factor-based approximation methods for 

measuring DCFs.6 A relatively simple approach that provides “basic insight into the coincidence of 

[renewable] generation and load,” it is not frequently used in major studies of renewable generation 

due to the “widespread acceptance and use of more sophisticated methods.”7 The preferred metric for 

measuring the DCF is the effective load carrying capability (ELCC) method. However, the ELCC method 

requires, among other data, a “complete inventory of conventional generation units’ capacity, forced 

outage rates and maintenance schedules.”8 With Southeastern utilities in significant flux, considering a 

high number of ongoing plant retirements and new generation in process, it is impractical for a non-

utility planning study to obtain a useful forecast with a “complete inventory” of these data.  

In a study that reviewed the methods used by Southeastern utilities for measuring DCFs, it was noted 

that they are less useful and potentially inaccurate relative to the ELCC because they do not “capture 

the short term or annual variability” of variable renewable energy resources, or their correlation with 

demand throughout the year.9 In order to address this shortcoming without engaging in an impractical 

forecasting effort, a new variant of the capacity factor-based approximation method, the System Peak 

Hours (SPH) method, is utilized in this analysis and described in greater detail in Appendix A. The SPH 

method is effective at capturing both the short-term (hourly) correlation with demand, as well as the 

annual variability of renewable energy resources. The SPH method improves on other capacity factor-

based approximation methods by using a matched, multi-year set of renewable energy generation and 

utility system demand data. 

For example, TVA’s current method for establishing the DCF of solar power resources is the average 

summer capacity factor during the 5 – 6 pm CDT (also referred to as CPT or central planning time) 

hour.10 An evaluation of TVA’s system load data shows that this hour has been one of the top 20 system 

                                                           
4 Duke Energy Carolinas, Integrated Resource Plan (Annual Report) (September 1, 2014), p. 6. 
5 Ela, E. et al., Active Power Controls from Wind Power: Bridging the Gaps, National Renewable Energy Laboratory, 
University of Colorado, and Electric Power Research Institute, NREL Technical Report NREL/TP-5D00-60574 
(January 2014). 
6 Not all Southeastern utilities that measure DCFs have publicly described their methods. 
7 Denholm, P. et al., Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the 
U.S. Electric Utility System, National Renewable Energy Laboratory, NREL Technical Report NREL/TP-6A20-62447 
(September 2014). 
8 Keane, A. et al., “Capacity Value of Wind Power,” IEEE Transactions on Power Systems (v. 26, no. 2), Task Force on 
the Capacity Value of Wind Power, IEEE Power and Energy Society (September 2010), p. 3. 
9 Keane (2010), p. 4. 
10 Tennessee Valley Authority, “2015 Integrated Resource Plan: IRPWG Meeting Session 7 – Day 2,” (May 30, 2014) 
Slide 27. 
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peaks only 10 times over a 16-year period (about 3% of such peaks). Furthermore, as illustrated in Figure 

1, TVA system peaks at 6 pm are 4 GW lower than at 4 pm.  In other words, daily peaks occurring at 4 

pm are usually more than 13% higher than daily peaks occurring at 6 pm. Thus, the hour that TVA has 

chosen to use to evaluate solar system performance is neither representative of typical system peaks 

nor is it representative of periods in which system capacity needs are particularly stretched. The SPH 

method is designed to focus on hours that are representative of periods in which system capacity needs 

are stretched, and to exclude hours in which system capacity needs are easily met by the utility’s power 

resources. 

Figure 1: TVA System Summer Peaks (1998-2013) 

 

Because the SPH method and the measurement methods used by Southeastern utilities all use capacity 

factor averaging during peak periods, it is not surprising that a comparison of those measurements 

shows that they are sometimes in rough agreement. TVA’s method for wind resources is different from 

that used for solar. Briefly summarized, TVA averages the capacity factor for the peak hour on each of 

the 20 peak days during the summer season.11 Although not as well documented, Duke Energy (in the 

Carolinas) and Southern Company (whose values are not publicly disclosed) appear to use a peak-period 

capacity factor averaging method that utilizes a block of summer hours.12  

Based on the analysis conducted for this report using the SPH method, as illustrated in Figure 2, the 

following results were demonstrated in the Southeast: 

                                                           
11 Tennessee Valley Authority, “2015 Integrated Resource Plan: IRPWG Meeting Session 7 – Day 2,” (May 30, 2014) 
Slide 25. 
12 Duke Energy Carolinas, Integrated Resource Plan (September 2014); and Duke Energy Progress, Integrated 
Resource Plan (September 2014). Georgia Power Company, Advanced Solar Initiative and ASI-Prime Request for 
Proposals for Solar Photovoltaic Generation, Attachment G (March 10, 2014). 
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 For every 100 MW of solar power resources, about 50-70 MW of conventional generation 

capacity can be avoided. The exact value depends on the location and technology used. TVA’s 

values are in close agreement with these, Duke’s 45 MW value appears somewhat low, and 

Southern Company does not disclose its DCF value. 

 For every 100 MW of wind resources generated in the Southeast, the limited available data 

suggest 10-15 MW of conventional generation capacity can be avoided. Both technology change 

and the lack of data suggest that these estimates are subject to revision. These values are 

consistent with (even a bit lower than) the values used by TVA and Duke (again, Southern 

Company does not disclose its DCF value). 

 For every 100 MW of wind resources imported into the Southeast via HVDC transmission,13 

about 45-60 MW of conventional generation capacity can be avoided. The exact value depends 

on the wind characteristics, the business model for the transmission provider, and the amount 

of “wheeling” from one utility system to another that is needed. Even though TVA is actively 

considering the import of these resources, TVA is currently utilizing a much lower value derived 

from market experience with wind resources from other regions. 

Considering projected or likely near-term renewable energy development pathways, a mix of renewable 

energy in any Southeastern utility territory is likely to have a dependable capacity rating of roughly 50%. 

                                                           
13 Imports of wind energy via regional AC transmission grids were not studied. 
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Figure 2: Summer Dependable Capacity Factors Calculated Using System Peak Hours Method, Assuming No Substantial Prior 
Renewable Energy Development 
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2. Impact of Renewable Energy Development on Dependable Capacity Factors14  
If the Southeast deploys a mix of solar and wind resources to meet 10-20% of annual electricity demand, 

the DCFs will decrease. For solar, the values would drop to 25-40 MW; for regional wind, the values 

would increase slightly; for HVDC wind imports, the values would drop to 20-40 MW per 100 MW of 

conventional generation. 

Few utilities in the Southeast currently account for the general decline in the DCFs of renewable energy 

resources as grid penetration increases. The DCF decreases as grid penetration increases because the 

number of hours in which the utility faces significant capacity shortfalls decreases during times when 

renewable energy is generating. (This shift is also examined in Section 4.) This may not be an important 

oversight if low grid penetration is assumed, but planning for scenarios with 10-20% of energy supplied 

by renewable energy generation clearly requires such consideration.   

For example, DCFs for utility-scale solar power resources in the three utility service areas today are at 

very similar levels for both fixed mount systems (49-54% DCFs) and single-axis tracking systems (60-

63%). However, as illustrated in Figure 3, at higher levels of deployment, the DCFs diverge somewhat. 

For Duke Energy, which has the least wind power included in its scenario, the DCF values do not 

decrease as much as for the other two utilities. (The scenarios, as described in Appendix A, included 

over 4,000 MW of solar plus varying amounts of wind, but dependable capacity values were only 

estimated at 2,650 – 3,800 MW, depending on the utility scenario.)  

Although there are some differences driven by the distinct characteristics of each utility scenario, the 

overall finding for solar is that there is a consistent alignment of solar energy production relative to the 

system load shapes across the Southeast, and the impact of solar development on DCF values decreases 

in a consistent manner.15 Another interesting observation is that higher capacity values are generally 

obtained towards the western portion of the region. This can be seen by noting the slight improvement 

for solar in Alabama, Florida or Mississippi relative to Georgia, but is also observed within the TVA 

dataset. 

Other sources of potential capacity value sometimes overlooked by utilities are the value of regional 

coordination, and synergies among different resources. Both of these features are considered in this 

analysis. Regional coordination benefits are demonstrated by higher capacity values obtained by 

assuming that much of the solar energy development would occur in utility areas with higher DCFs. As 

described in Appendix A, utilizing an average of several sites demonstrated better performance than just 

using any single site.  

Furthermore, as illustrated further in Appendix A, the application of wind and solar resource 

development together in scenarios resulted in a better understanding of how DCFs would likely evolve 

under foreseeable development scenarios. For example, even though DCFs for wind alone would 

decrease with its development, in combination with solar development, the DCFs instead increase. 

                                                           
14 See Appendix A for greater detail on this topic. 
15 Solar DCFs do vary somewhat as wind resources are deployed. The sharp, but small, drop in TVA’s DCF values 
between Tranches 2 and 3 appears to be caused by wind resource deployment. 
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Figure 3: Impact of Scale of Development on Solar Power Dependable Capacity Factors 

 

The trends observed in Figure 3 are consistent with findings for other utilities across the country. For 

example, TVA’s average solar DCF (fixed and solar) is plotted against similar values from other utilities in 

Figure 4.16 (DCFs are referred to as “capacity credit” in the figure, and the 3,950 MW of solar energy 

studied over the 1998-2012 study period represents about 4.4% of TVA system demand at the higher 

end of the TVA trend in the figure.) These findings also suggest that the Southeast has relatively high 

DCF values for solar.17 

                                                           
16 Mills, A. and R. Wiser, An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement 
Processes, Lawrence Berkeley National Laboratory, LBNL-5933E (December 2012). 
17 This advantage was first observed by Richard Perez in the early 1990s. Perez, R., S. Letendre and C. Herig, PV and 
Grid Reliability: Availability of PV Power During Capacity Shortfalls, Proc. ASES Annual Meeting (2001). 
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Figure 4: TVA Solar Dependable Capacity Factor Contrasted with Other Utilities Summarized 
by LBNL 

 

3. Impact of Renewable Energy Development on Utility System Reliability18 
While renewable energy resources are variable, they perform very well during high demand periods 

when utility systems need to use most of their generation resources. On average, regional solar and 

imported wind resources should generate at 50-60% capacity factors during these hours. However, the 

level of renewable energy generation in the Southeast today and planned for the near-term is not large 

enough to increase system reliability risks – even during hours in which renewable energy production 

might be low.  

Furthermore, even if renewable energy is increased to meet 15% or more of energy requirements, 

reliability should be relatively unaffected. At these higher levels of renewable energy use, there would 

be a balance of increased and decreased risks that utilities would need to monitor and manage.  

To place the balance of risks in context, it is worth noting that during the vast majority of hours of the 

year, system demand for a utility is well below available resources. For example, the three utilities 

studied here would typically have a 25% (or greater) capacity surplus for 98% of the year. During those 

remaining hours, the utility would manage a very small risk that available generation would not be 

sufficient to meet demand.  

Thus, utility system reliability would change in both directions, there would be reliability risks and 

benefits associated with renewable energy development. Hours with increased reliability risks would 

occur very infrequently, roughly one hour per year on average (an adverse effect). However, that same 

                                                           
18 See Appendix B for greater detail on this topic. 
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level of renewable energy generation would also improve reliability by reducing the number of “risky” 

hours by 20-40% (a beneficial effect).  

With the data available to this analysis, it is not possible to quantitatively demonstrate whether the 

benefits outweigh the adverse effect.19 Nonetheless, it is possible to arrive at some quantitative 

observations of these competing effects by identifying the results of two key metrics: 

 Higher risk hours: The number of hours in which renewable energy, in a well-planned system, 

results in lower hourly capacity reserves.20  

 Reliability ensured hours: The reduction in the number of hours with a significant probability of 

reliability incidents, defined as capacity reserves of less than 125% of hourly demand. 

As illustrated in Figure 5, the ratio of higher risk hours to reliability ensured hours is 1:76 or less, with a 

clearly positive impact appearing to occur on the Duke Energy system on which no higher risk hours 

result, even though the scenario studied was heavily weighted towards solar power. 

Figure 5: Impact of Renewable Energy Development Scenarios on Reliability 

 Higher Risk Hours 
Reliability 

Ensured Hours 
Ratio 

Duke Energy (North and South Carolina) 0.0 %   (0) 0.734 % (558) 0:100 

Southern Company 0.007 %   (6) 0.549 % (481) 1:80 

Tennessee Valley Authority 0.008 % (11) 0.639 % (840) 1:76 

 

Even if the ratio of higher risk hours to reliability ensured hours is very low, it would be reasonable to be 

concerned that there could be specific hours in which a system that depends on high levels of renewable 

energy might be at greater reliability risk due to highly unusual circumstances. Utility executives have 

raised just this concern, citing reliability challenges that occurred during the recent “polar vortex” and 

speculating about the difficulty of meeting those challenges with high levels of solar penetration.21 This 

anecdotal concern is discussed in the following section.  

The more general concern that might be raised is that these results just seem implausible.  Some 

readers may be dubious that replacing 3-4 GW of conventional generation with 8 GW of renewable 

energy (e.g., in the case of TVA) could result in little or no decrease in reliability. This concern can be 

addressed in two ways. 

First, the use of a forecast scenario of renewable energy deployment guides utilities towards an 

appropriate amount of dispatchable capacity that may be replaced with variable resources. So the 8 GW 

of nameplate renewable energy capacity studied for the TVA system offsets “only” 4 GW of dispatchable 

generation capacity. It should be noted that this substantial change would also result in the utility 

                                                           
19 The underlying methods of a target reserve margin study involve stochastic evaluation of probabilities. For 
example, in a random draw of circumstances, the utility may not experience a reliability event during an hour with 
an effective reserve margin of 10%, but might experience a reliability event during an hour with an effective 
reserve margin of 20%. 
20 In other words, the number of hours in which the utility might consider taking additional measures to ensure no 
added risk of a reliability incident. 
21 Mazzocchi, Lee, “The Challenge of Making the Electric Grid Better,” EPRI Smart Distribution and Power Quality 
Conference (July 2014). 
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changing its dispatchable generation fleet by adjusting the optimal mix of new capacity (e.g., gas peaker 

versus combined-cycle units). Those changes in the expansion plan would be developed in a resource 

planning study. 

Second, the use of a multi-year dataset ensures that the resulting planning standards incorporate many 

different actual challenges to reliability. Some hours are more reliable, some hours are less reliable. 

Implausible examples can be constructed to make any resource plan look risky. Isolating the analysis to a 

particular “strawman” hour would ignore the improvements in many other hours.  

For example, the probability of solar, in-region wind and imported wind power dropping from 8 GW to 0 

GW in a single hour is no more likely nor relevant to the planning of the three utility systems analyzed 

here than the loss of 8 GW of nuclear capacity in a single hour.  Any “perfect storm” scenarios a utility 

might wish to address could be addressed with specific mitigation measures (e.g., modifying a thermal 

generation unit to be more reliable at cold temperatures). By considering aggressive, but realistic 

scenarios of renewable energy development in the context of actual system conditions for over a 

decade, the likelihood that an extreme event has been overlooked has been minimized.  

4. Role of Solar Power on Utility Systems During Winter Peak or “Polar Vortex” Type Events  
As solar power is developed to scale, the net system peak may shift from primarily summer afternoon 

hours to include more summer evening and winter morning hours. Since the output of solar systems is 

relatively small (or zero) during those hours, the contribution of solar power to meeting system peak 

needs would be diminished. As discussed above, with increasing amounts of solar power deployed on 

utility systems, the DCFs for solar systems declines. However, some may be concerned that depending 

on capacity from solar systems might put the utility at greater risk during an extreme winter peak event 

(e.g., “polar vortex”). 

In fact, none of the utility systems we studied demonstrate such a problem. The data sets used for this 

study include three utilities studied over more than a full decade of historical hourly load data, totaling 

literally hundreds of thousands of hours. As illustrated above in Figure 5, the total number of hours in 

which the effective reserve margin for these three utilities was worse with renewables than without is 

only 17 hours, or less than 0.01% of the hours in the analysis period. 

One reason that winter peaks are not a problem is that the winter peaking hours in the Southeast tend 

to be significantly lower than the annual forecast peak. For Southern Company, in fact, the maximum 

winter load hour within the ten year dataset was only 96% of the forecast annual peak. For Duke Energy 

and TVA, there were a few winter load hours that exceeded 100% of the forecast annual peak, but the 

vast majority of winter load hours were 95% of the forecast annual peak or less. In short, Southeastern 

utility systems almost always have an adequate buffer between winter peaks and the forecast annual 

peak. 

This buffer is reinforced by the more efficient operation of conventional generation during the winter.  

system planned for summer peak will have more conventional capacity available in the winter to 

compensate. For thermal generation resources, such as natural gas units or nuclear power, the winter 

capacity rating is typically somewhat higher, resulting in a summer “shortfall.” For renewables, the DCF 

of solar energy is higher in the summer than in the winter, indicating a summer “shortfall.” Thus, the 

potential for capacity needs to be determined in the winter rather than summer would occur when the 

winter “shortfall” of renewable energy resources is greater than the summer “shortfall” of thermal 
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generation resources. As illustrated in Figure 6, for two of the three utilities considered it appears 

unlikely that the levels of renewable energy studied would in and of themselves cause the peak to shift 

from summer to winter. 

Figure 6: Impact of Substantial Renewable Energy Development Scenarios on Seasonal Peak 

Dependable Capacity (MW) 
Thermal Generation Renewable Generation Scenario 

Summer Winter 
Summer 

“Shortfall” 
Summer Winter 

Winter 
“Shortfall” 

Duke Energy (Carolinas)22 35,467 37,302 1,835 2,246 619 1,627 

Southern Company23 41,522 43,095 1,573 3,099 2,312 787 

Tennessee Valley Authority24 40,040 41,157 1,117 3,141 1,890 1,251 

 

Even though the Duke Energy scenario does not suggest any reliability issues (as summarized in the 

discussion related to Figure 5), it should be discussed further here because it is an almost all-solar 

scenario. Due to the lack of hourly generation data stretching back for a decade or more for wind 

resources available in or near Duke Energy’s territory in the Carolinas, the maximum renewable scenario 

for Duke Energy in this study only includes 500 MW of wind resources, delivered via HVDC transmission 

and wheeled across the TVA and Southern Company systems for delivery to Duke Energy.25 So the 

impact on seasonal peaks for Duke Energy can be viewed as representative of a utility that selects 

mostly solar power for its resource portfolio as opposed to also including wind power. However, 

renewable generation below the DCF was demonstrated during a few hours (less than 1 hour per year) 

in which the winter load was near or above the forecast annual peak. This observation supports the 

recommendation to balance solar with wind to ensure year-round reliability. 

TVA is the only utility in which the summer “shortfall” for thermal generation is smaller than the winter 

“shortfall” for renewable generation, which indicates a risk for an 8 GW renewable energy generation 

scenario to cause a shift to a winter peaking situation. However, the thermal generation data for TVA 

are for 2013 and do not include substantial changes in TVA generation anticipated to be in place over 

the next several years. 

Besides the winter “buffer” discussed above, another reason that solar energy is unlikely to result in 

greater reliability problems during “polar vortex” type events is that wind power is likely to be 

substantial during winter peaking episodes. As a result, the combined impact of solar and wind power 

during the very highest winter peak load periods is consistent with its DCF.  

For example, TVA has experienced winter peaking conditions on average 11 hours per year over a 15 

year period. In Figure 7, the power generation from an 8,000 MW portfolio of wind and solar is graphed 

for all 158 winter peaking hours. For hours with winter loads greater than 97% of the forecast annual 

                                                           
22 Thermal generation capacity based on 2020 forecast for Duke Energy Carolinas, Integrated Resource Plan 
(September 2014); and Duke Energy Progress, Integrated Resource Plan (September 2014). 
23 Thermal generation capacity based on 2020 forecast for Southern Company, which is not available in a public 
document from Southern Company. This forecast was prepared for Southern Alliance for Clean Energy using public 
data by a consultant working on a confidential project. 
24 Thermal generation capacity based on January and August 2013 data for Tennessee Valley Authority, FERC Form 
714 (Part 2, Schedule 2). 
25 Southeast Regional Transmission Planning Process, 2014 Economic Planning Studies: Preliminary Results 
(September 2014). 
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peak, the renewable generation has capacity factors of approximately 40-60%. While wind and solar 

generation is likely to be very low during some winter peaking hours, since those hours are less than 

97% of the forecast annual peak, the impact on reliability turns out to be consistent with conventional 

system risk standards. 

Figure 7: Renewable Generation (8,000 MW Wind and Solar) vs TVA Load During Winter Peak 
Hours, 1998-2012 

 

5. Impact of Renewable Energy on the Ramping of Conventional Generation Plants26 
No discussion about renewable energy and the ability of utilities to adapt to utility resource planning 

can be complete without a reference to the widely cited California ISO “duck curve.”27 As illustrated in 

Figure 8, CAISO has forecast that the growing deployment of solar power in its transmission region will 

lead to episodes with large, rapid ramps during late afternoon hours as solar production rapidly ends. 

Because it illustrates the potential for renewable generation to drive a ramp rate of over 4 GW per hour 

in the springtime, the graph has generated widespread concern about the impact of renewables on 

utility system operations. 

                                                           
26 See Attachment C for more detail on this topic. 
27 California ISO, What the Duck Curve Tells Us About Managing a Green Grid´ (2013). 
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Figure 8: Example of the Widely-Circulated California ISO “Duck Curve” 

 

This graph, and others similar to it, have been circulated by senior utility executives in the Southeast.28 

However, the CA-ISO “duck curve” is not representative of conditions that are likely to occur in the 

Southeast, even at renewable energy deployment of 10-20% of annual electrcity demand. 

In the Southeast, renewable energy generation will not cause any net increase in the ramping of 

convention generation in the near future.  At levels of renewable energy deployment up to at least 

roughly 20% of annual peak demand, the following observations were made in this analysis: 

 While some individual hours might have increased ramps, other hours will have decreased 

ramps. 

 Large, rapid ramps will not become more frequent or severe due to solar power deployment. 

 Substantial deployment of wind power will drive some increase in the frequency of ramping 

events, but will not cause a new class of large ramp rates. 

 In general, solar power provided reliable on-peak power that tracks well with system peaks. 

While its impact does diminish as resource deployment becomes larger, that effect is gradual, 

predicable and manageable. 

To reach these findings, the utility ramp rates should be put into perspective. The vast majority of utility 

ramp rates, with or without up to the maximum 8 GW of renewable energy analyzed here, remain 

below 5% of total system capacity. The idea that installing renewable energy with a nameplate capacity 

as great as 20% of total system capacity will lead to wide swings in operating loads is not supported by 

the data. 

                                                           
28 Hoagland, J., Utility Planning Challenges, Tennessee Valley Authority, Presentation to Tennessee Advanced 
Energy Business Council Webinar (August 15, 2014). 
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Instead, the main result of adding renewable energy into a ramp rate analysis is that some hours have 

increased ramps, and other hours have decreased ramps. To illustrate extreme operating conditions, 

two episodes were selected from each utility dataset.  

The first episode was selected to represent a system peaking event, identifying a multi-day period with 

peaks in excess of the utility’s forecast annual peak.29 Coincidentally, for all three utilities, the August 7-

10, 2007 episode was selected as a highly challenging peaking event. The TVA case study, illustrated in 

Figure 9, provides a good example of how substantial levels of renewable energy could affect utility 

systems in the Southeast during challenging summertime hours. 

Figure 9: TVA Load Shape, 0 – 8 GW Renewable Energy Scenarios, Summer Peak Episode 

 

Similar case studies for the other two utilities are provided in Appendix C. As summarized in Figure 10, 

adding renewable energy generally decreased the system swing on each day of the episode (ramp up 

from minimum load to maximum load) and also decreased the maximum ramp rate (averaged over the 

ramping period). There were some exceptions: TVA and Southern Company’s maximum swing increased 

when renewables were added, but their minimum swing and ramp rates decreased. At the system level, 

                                                           
29 Each of the six case study episodes span almost the full range of potential renewable energy generation. The 
Southern Company and TVA scenarios include substantial amounts of both solar and wind resources; average 
renewable generation capacity factors are about 40% in system peaking events and 50% in low load events. 
Because the Duke Energy analysis includes mostly solar resources, the average renewable generation capacity 
factors in the system peaking event and the low load event are lower, about 35%. 
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the case studies illustrate how adding renewables will often make system peaking events less 

challenging to utility operators. 

Figure 10: System Peaking Event Case Studies 

 
System 

Peak 
(MW) 

Minimum 
Swing 
(MW) 

Maximum 
Swing 
(MW) 

Maximum 
Ramp 

(MW/hr) 

Duke Energy (North and South Carolina) 34,323 12,614 14,225 1,271 

Southern Company 36,029 13,100 13,674 1,140 

Tennessee Valley Authority 33,315 11,681 12,912 1,076 

High Renewable Generation Scenario 

Duke Energy (North and South Carolina) 32,223 10,125 12,632 902 

Southern Company 34,217 11,242 14,447 1,032 

Tennessee Valley Authority 31,034 11,335 14,180 1,013 

 

The second episode was selected to represent a low load event with high renewable energy generation. 

The most challenging low load events for each utility occurred in April, but on different dates in 2011 

and 2012. The TVA case study, illustrated in Figure 11, provides a good example of how substantial 

levels of renewable energy could affect utility systems in the Southeast during low load periods with 

high renewable generation. 

Figure 11: TVA Load Shape, 0 – 8 GW Renewable Energy Scenarios, Springtime Low Load / 
High Renewable Generation Episode 
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As summarized in Figure 12, the swings and ramp rates experienced with or without renewables during 

springtime low load events are substantially less than those experienced during system peaking events. 

However, adding renewables does drive several noteworthy changes during low load events, including: 

 Generally increases the size of daily swings. 

 Can cause the system to add a second daily minimum/maximum, particularly if wind resources 

are not added to balance the solar resources. For TVA and Southern Company (with wind 

balancing solar), an additional minimum/maximum event was added on only one day. But for 

the Duke Energy scenario (with mainly solar resources), additional minimum/maximum events 

were added on each day of the episode. 

 Generally increases the ramp rates – but the ramp rates still remain significantly lower than 

those experienced during system peaking events. 

Overall, it would be fair to conclude that adding renewable energy would increase operational 

challenges during springtime low load events. But it would also be important to note that the 

operational responses challenges would remain significantly less challenging than those needed to 

manage system peaking events.30 

Figure 12: Springtime Low Load / High Renewables Event Case Studies 

 
System 

Peak 
(MW) 

Minimum 
Swing 
(MW) 

Maximum 
Swing 
(MW) 

Maximum 
Ramp 

(MW/hr) 

Duke Energy (North and South Carolina) 17,857 3,307 6,616 641 

Southern Company 21,062 3,405 7,702 804 

Tennessee Valley Authority 17,975 4,230 6,446 645 

High Renewable Generation Scenario 

Duke Energy (North and South Carolina) 17,857 2,220 5,616 891 

Southern Company 18,458 4,897 7,671 979 

Tennessee Valley Authority 14,432 3,229 7,395 975 

 

To place these case studies in context, the entire data set was examined statistically for individual 

resources as well as the combined resource scenarios. Ramp rates were calculated over 1 hour 

increments.31 This provided a broad view, considering hours in which renewable energy improved 

system ramp rates as well as those in which ramp rates became more challenging. 

The statistical analyses demonstrates that solar power deployment will not cause an increase in the 

frequency or severity of hourly ramp rates, even when nameplate solar capacity represents as much as 

one-third of peak system demand. One reason for this finding is that the sun is almost always shining 

during peak hours. For example, on the TVA system, solar systems can produce at least 45% of 

nameplate capacity during 99% of the highest demand hours. The idea that solar might suddenly 

                                                           
30 As noted throughout this document, the analysis was restricted to the system level and did not include 
consideration of localized issues that might require dispatch or transmission contingency planning. 
31 Three hour ramp rates were also calculated for a portion of the analysis, but the results were not sufficiently 
different from the one hour ramp rate studies to suggest any benefit to more extensive study. 
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disappear from the TVA system during a peak demand period is simply not supported by careful 

analysis. 

Wind power resources (including both in-region and imports via HVDC) will drive some increase in the 

frequency of ramping events. The main impact appears to be in terms of ramping the system down at a 

greater frequency. Fortunately, this impact can be mitigated by introducing contract terms that provide 

the utility with the opportunity to curtail wind generation to allow for other resources to be ramped 

down more gradually (after a brief curtailment, the wind generation would be restored to full output). 

The analysis also shows that wind power will not challenge system operators with a new class of large 

ramp rates, even when nameplate wind capacity represents as much as one-third of peak system 

demand.  

Examined in combination (as is likely to occur in practice), higher levels of solar and wind energy 

deployment are likely to result in an increase in the frequency of higher ramp rates. For example, as 

illustrated in Figure 13, initially with the introduction of solar resources, the frequency of high ramp up 

rates decreases. The main adverse impact on ramp rate frequencies on the Southern Company system 

relates to the introduction of HVDC wind resources, but the impacts are relatively modest. As this 

example suggests, the increase in the frequency of hourly ramp rates in excess of 1,000 MW per hour is 

likely to be gradual and predictable. 

Figure 13: Southern Company Hourly Ramp Rate, 0 – 7.3 GW Renewable Energy Scenarios 

 

Because any adverse impact on ramp rates will be gradual, predicable and not fundamentally different 

from existing operating conditions, utilities should find these changes manageable. To the extent that 
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the increase in the number of hours with higher ramp rates is a concern, there are a number of readily 

available strategies that utilities could implement to better align load to variable renewable energy 

resources. Although no single strategy is a “silver bullet,” a recent report by the Regulatory Assistance 

Project explains how several steps taken in combination, could allow utilities to nearly flatten load (see 

Figure 14).32 The effectiveness of those steps for specific Southeastern utilities is not examined in this 

analysis, but certainly utility decisions to adopt (or reject) renewable energy resources should not be 

made without considering the combined effect of operational strategies. 

In the Southeast, the California “duck” won’t hunt. Quite simply, solar production and system demand 

are more fortunately aligned in the Southeast than in California.  Geographic and system-specific factors 

result in the Southeastern solar resource actually reducing system ramp rates, at least up to a point. 

Concerns illustrated by the California ISO “duck curve” are surely valid in California, when it reaches 

much higher deployment of renewable energy generation than the Southeast is currently 

contemplating. Not only do these conditions not exist in the Southeast, the east-west orientation of load 

and other attributes of geography and weather mean that the “duck won’t hunt” in the Southeast. 

Figure 14: Utility Strategies for Aligning Load to Variable Resources 

 

6. Remaining Uncertainties About Operational Constraints and Attributes Associated with 

Renewable Energy Development in the Southeast 
While introducing substantial amounts of variable resources into a utility system represents real change 

for Southeastern utility systems, this analysis illustrates methods that utilities could use to plan for and 

manage the transition to renewable energy. For utilities to fully incorporate these findings into their 

planning practices, several additional steps, requiring access to confidential utility data, would be 

necessary. 

                                                           
32 Lazar, J., Teaching the “Duck” to Fly, Regulatory Assistance Project (January 2014). 
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First, the System Peak Hours (SPH) method utilized for this analysis should be validated in comparison 

with a full Effective Load Carrying Capacity (ELCC) study. While the ELCC study method may not be well-

suited to forecasting if the operating characteristics of future generation fleets are too uncertain, both 

methods can be used to study historical conditions for benchmarking purposes. 

Second, a formal reserve margin study could be conducted to guide the development of plans to ensure 

that the introduction of large scale renewable energy would not adversely affect system reliability. This 

would effectively combine the results of a system planning study, a generation forecast study and the 

application of the SPH (or ELCC) method to assess the overall reliability of future generation fleets. 

It is also worth acknowledging that these results may or may not be generalized to other Southeastern 

utilities. SACE plans to extend these analyses to include utilities in peninsular Florida and smaller utilities 

elsewhere in the Southeast. To the west or north of the utilities studied, regional authorities such as 

PJM have adopted means of analyzing renewable energy resource to ensure reliable system operations. 
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Appendix A 

System Peak Hours Method: 

Dependable Capacity Factor Analysis for Generic Renewable Energy Resource 

Development in the Southeast 

In determining whether a utility has adequate resources to meet its forecast system requirements, 

Southeastern utilities appear to have adopted capacity factor-based approximation methods for 

measuring the dependable capacity factor (DCF) of renewable energy resources. (Elsewhere these may 

be referred to as an on-peak capacity value, a generation capacity credit, or by some other 

nomenclature.)  

A capacity factor-based approximation method is the easiest, but least sophisticated method for 

measuring the DCF of variable renewable resources. A number of different methods for this 

measurement have been developed and applied, suggesting that utility planners have not coalesced 

around an ideal balance between simplicity and sophistication. The National Renewable Energy 

Laboratory (NREL) has categorized these methods into four groups, as summarized in Figure 1, of which 

the preferred metric for measuring the DCF is the effective load carrying capability (ELCC) method.  

Figure 1: Approaches to Measuring the Dependable Capacity Factor for Variable Renewable 
Energy Resources, in Order of Increasing Difficulty1 

Name Description Tools Required 

1. Capacity factor approximation using 
net load 

Examines RE output during periods of 
highest net demand 

Spreadsheet 

2. Capacity factor approximation using 
loss of load probability (LOLP) 

Examines RE output during periods of 
highest LOLP 

Spreadsheet 

3. Effective load-carrying capacity (ELCC) 
approximation (Garver’s Method) 

Calculates an approximate ELCC using 
LOLPs in each period 

Spreadsheet 

4. Full ELCC 
Performs full ELCC calculation using 
iterative LOLPs in each period 

Dedicated tool 

 

The more difficult methods require use of loss of load probability (LOLP) data. LOLP is a probability 

estimate of how often the load on a power system is expected to be greater than the capacity of the 

generating resources. LOLP data are derived from, among other data, a “complete inventory of 

conventional generation units’ capacity, forced outage rates and maintenance schedules.”2 With 

Southeastern utilities in significant flux, considering a high number of ongoing plant retirements and 

new generation in process, it is impractical for a non-utility planning study to obtain a useful forecast 

with a “complete inventory” of these data. Even for a utility planning department, creating such a 

                                                           
1 Denholm, P. et al., Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the 
U.S. Electric Utility System, National Renewable Energy Laboratory, NREL Technical Report NREL/TP-6A20-62447 
(September 2014), p. 29. 
2 Keane, A. et al., “Capacity Value of Wind Power,” IEEE Transactions on Power Systems (v. 26, no. 2), Task Force on 
the Capacity Value of Wind Power, IEEE Power and Energy Society (September 2010), p. 3. 
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forecast prior to committing to a particular resource plan may be too resource intensive. Thus, an 

methods that require LOLP data may not be the best tool for long-term planning studies.  

However, In reviewing the methods used by Southeastern utilities for measuring DCFs, to the extent 

those methods have been publicly explained, it appears that do not capture both the short term and the 

annual variability of renewable energy resources, particularly their correlation with demand in a variety 

of circumstances over a multi-year period.3 In order to address this shortcoming without engaging in an 

impractical forecasting effort, a new variant of the capacity factor-based approximation method, the 

System Peak Hours (SPH) method, is applied to three vertically-integrated utilities in the Southeast. The 

SPH method is effective at capturing both the short-term (hourly) correlation with demand, as well as 

the annual variability of renewable energy resources. The SPH method improves on other capacity 

factor- based approximation methods by using a matched, multi-year set of renewable energy and utility 

system demand data. 

1. Description of the System Peak Hours (SPH) Method 
The System Peak Hours (SPH) method calculates dependable capacity factors (DCFs) that are a simple 

average of capacity factors during winter and summer peak hours. Peak hours are defined as hourly 

loads exceeding 90% of the forecast annual peak, with the number of hours included in this definition 

varying from year to year depending on how actual system demand relates to the forecast annual peak. 

The calculation is performed using a dataset that includes modeled (or actual, if available) capacity 

factors for renewable energy resource technologies and system loads for individual hours spanning 

several years, with the validity of the method increasing as the number of years included in the dataset 

becomes larger.4  

The use of the forecast annual peak as the basis for selecting the peak hours is the first distinctive 

feature of the SPH method. Because the hours being selected are precisely those in which system 

demand is likely highest relative to available capacity, it is essential that the load and variable resource 

datasets be time-correlated. The importance of the correlation between the definition of peak hours 

and system capacity planning standards is that the definition should approximate the selection of hours 

with higher LOLP. Referring back to Figure 1, the SPH method does not fall neatly into either category of 

capacity factor-based approximation methods: it does not use highest net demand, because selection of 

high demand hours is relative to forecast demand, but neither does it rely on LOLP. The SPH method has 

characteristics of each category.  

The SPH method follows a multistep calculation process – listed here - in order to estimate the DCFs 

associated with types of renewable energy resources. Note that each step in the method is also 

illustrated using a causal loop diagram approach, in Figures 2-5. 

 Step 1: Representative load shapes of the different renewable resources (e.g., various solar and 

wind technologies) are estimated using modeled production load shapes. The modeled 

                                                           
3 Keane (2010), p. 4. 
4 Using a larger number of years provides a wider range of climate, economic, and customer load conditions over 
which to test the potential interaction of renewable energy and system demand. The SPH method applied to very 
short time periods could generate unrepresentative results. The specific data coverage used in this analysis is 
discussed in Section 4. 
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production data should be specific to actual or reasonably feasible production sites5 located in, 

near or proposed for interconnection with the service territory of the specific analyzed utility. 

The data used in this analysis are described in Section 4. Based on these site-specific, modeled 

production data, system capacity factors are calculated as a simple average annual capacity 

factor (and thus do not depend on the SPH method). 

Peak hours are selected by comparing hourly system load to the utility’s forecast annual peak. 

Hours with system load greater than 90% of the utility’s forecast annual peak for the respective 

planning year are considered peak hours. The data are described in Section 4. 

Seasonal DCFs are estimated individually, at each individual renewable energy production site, 

assuming no prior renewable energy development (existing system loads). Each DCF value is 

simply the average of capacity factors during the applicable peak hours. 

The representative load shape (or production curve) for the generic system resources are 

created using a weighted (or simple) average of the hourly production data for each site-specific 

resource dataset. For the Tennessee Valley Authority (TVA) analysis, in order to select “best” 

sites to focus on resources that would be most preferred by the utility, sites were selected 

based on advantageous system capacity factor and DCFs. The selection criteria and averaging 

process should be reasonably transparent and related to the planning study objectives. 

 Step 2: Average DCFs and net resource system loads are determined for the representative 

renewable resource load shapes. These representative resource load shapes are particularly 

useful for integrated resource planning studies, which typically constrain the number of 

resources considered in the modeling process and hence would not evaluate specific projects. 

The average DCFs for each resource technology are estimated individually in the same manner 

as described in Step 1 for the individual sites. The net resource system loads are determined by 

detracting from the system load shape the various resource hourly load shapes.  

 Step 3: Seasonal DCFs for the renewable resource load shapes are calculated. Seasonal (winter 

and summer) DCFs are needed because most capacity planning models utilize a two-season 

capacity rating approach. In a utility planning context that applies a different capacity rating 

approach, the method should be adapted accordingly. The peak hours for these net system 

loads are selected using the same criterion as in Step 2. 

 Step 4: Seasonal DCFs and dependable capacity supplied at a utility portfolio level are calculated 

by assuming specific levels of resource deployment (tranches) over time. However, rather than 

using the utility’s forecast annual peak, a seasonally modified net annual peak is used. The peak 

is adjusted downward, taking into consideration the seasonal dependable capacity supplied by 

the renewable energy resources and also the need to ensure that those resources are 

augmented by the utility’s reserve margin (typically 15%). A minimum of three tranches of 

                                                           
5 The sites should be representative of likely resources that the project developers and the utility would be more 
likely to develop during the planning period in which the DCFs will be used. So for example among a random 
sample of solar production sites, a cross-section of sites with advantageous annual capacity factors and on-peak 
production should be used. 
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renewable resources development have been considered for all analyzed utilities, as described 

in Section 6. 

The seasonal modification of the forecast net annual peak is the second distinctive feature of the SPH 

method. The seasonally modified net peak is particularly important because, as solar power is 

developed to scale, the net system peak may shift from primarily summer afternoon hours to include 

more summer evening and winter morning hours. Since the output of solar systems is relatively small (or 

zero) during those hours, the contribution of solar power to meeting system peak needs would be 

diminished. Thus, in Step 4, the forecast annual peak is modified for winter and summer periods as the 

forecast annual peak, minus the seasonal net dependable capacity for the renewable energy resources 

included in the scenario, minus the portion of the seasonal net dependable capacity needed to meet 

reserve margin requirements (typically 15%). 

Another reason it is important to produce distinct summer and winter dependable capacity ratings for 

renewable energy resources is to ensure consistency with the manner in which conventional resources 

are planned. Currently, many planning regions (even those using the ELCC method) calculate only a 

single, year-round ELCC measurement for renewable energy resources. Yet for conventional, thermal 

generation resources, it is standard practice to calculate seasonal capacity ratings on a resource-specific 

basis. As discussed below, the seasonal capacity rating for solar is higher in summer than in winter, but 

for wind the reverse is true. Thus, the SPH method can be used to ensure that a utility considers the 

attributes of each resource, whether variable or conventional thermal, using consistent methods. 

The seasonal net dependable capacity is calculated as the product of the seasonal net dependable 

capacity factor and the nameplate capacity of the renewable energy resources included in the scenario. 

Because the seasonal net dependable capacity factor is the result of this process, the calculation process 

is iterative until a stable solution is found. 
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Figure 2: Step 1 - Representative Renewable Resources Load Shapes Estimation 

 

Figure 3: Step 2 - Net Resource System Loads and Renewable Resource System DCF Calculation 
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Figure 4: Step 3 - Renewable Resource Seasonal DCFs 

 

Figure 5: Step 4 - Portfolio DCFs & Average Capacity Deployed Calculation 
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either system failures or expensive short-term market purchases, but excessive reserves guarantees that 

customers will pay for capacity that may not be utilized sufficiently to justify the cost. 

As with all energy resources, renewable energy resources contribute to a centrally planned utility’s 

capability to plan for reliable service. Even though variable resources cannot be dispatched to meet 

increased demands for power,6 wind and solar resources are often productive during system peak hours 

and thus contribute to the system’s capacity to serve load. The question that the ELCC, SPH and other 

methods seek to answer is simply “How much conventional capacity can be avoided by the 

renewables?” 

Because most utilities maintain relatively up-to-date reserve margin studies, their target reserve 

margins already incorporate consideration of these factors for the existing mix of generation resources 

and the characteristics of the utility systems’ customer demand. The SPH method assumes a ceteris 

paribus approach, where the LOLP is unaffected by any changes to the characteristics of the generation 

mix or customer demand that occur other than the introduction of renewable energy resources. This is 

similar to the ELCC method, which holds all other aspects of the system constant, while calculating the 

difference in loads that can be reliably served by a generation system “with” and “without” a defined 

level of renewable energy resources.7 

The SPH method approximates the same basic result: the DCF for each resource is equivalent to the 

amount of conventional capacity that would not be needed for the generation system to perform at the 

target reserve margin level. It is important to establish a DCF that is less than the nameplate value of the 

resource since it is not possible for a variable resource to generate power at 100% of its nameplate 

capacity all of the time. It is of course also important to establish a DCF that is more than 0%, since the 

renewable energy resource contributes at least somewhat to meeting on-peak demands. 

If the SPH or some other capacity factor-based approximation method is used, the choice of the 

averaging period for the renewable energy output is a critical decision. Of course, if an ELCC or some 

other LOLP-based method is available, then that would provide a basis for measuring the DCF on the 

basis of reliability data. But when averaging is used, a misleadingly high or low DCF measurement can be 

obtained by excluding (or emphasizing) certain hours that are important (or unimportant) for a reliability 

measure. 

A utility that suggests its method is preferable because it is “conservative” would be reaching a mistaken 

conclusion. Using a DCF value that is too low would be suboptimal, in that the resulting planning 

decisions would lead to excess generation capacity on the utility system, at a cost to its customers. 

Subject to several caveats, the SPH method achieves a balance. 

                                                           
6 Note that wind resources can be curtailed almost instantaneously. Thus it is inaccurate to refer to wind resources 
as strictly “non-dispatchable.” Many utilities routinely utilize short-term wind curtailments (reductions in output) 
to help regulate system power fluctuations. 
7 MISO, Planning Year 2014-2015 Wind Capacity Credit (December 2013). 
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3. Calibration of the SPH Method 
As mentioned above, the distinctive features of the SPH method are the use of the forecast annual peak 

as the basis for selecting the peak hours, and the application of a seasonally modified forecast net 

annual peak. Each of these features could be more finely calibrated by, or in collaboration with, a utility. 

Both of these design features rest on the assumption that an “optimal” level of generation (or system 

capacity target) on a utility system is represented by the forecast annual peak plus the target reserve 

margin.8  The SPH method depends on the degree to which the utility’s forecast annual (net) peak 

represents the system size that the utility targets in its capacity planning process and thus represents at 

least a reasonable approximation of an “optimal” system.  

One way in which this approximation could be inaccurate is the choice to use the utility’s peak forecast 

from the prior year. Given the lag between a forecast capacity gap (difference between system capacity 

and a future target value) and construction of new resources, an earlier forecast might better represent 

utility decision-making. However, for this analysis, it was determined that the prior year forecast 

introduced the least complexity in interpretation. Nonetheless, a utility or regulator might reasonably 

select a different representation of the system capacity target. 

Another potential error in the approximation method is that the threshold, 90% of forecast annual (net) 

peak demand, is somewhat arbitrary. This value was chosen to identify the hours in which load is near 

the assumed system capacity target, net of variable renewable energy capacity. When load is near the 

assumed capacity target for the system LOLP should increase (all other things being equal), and the 

utility is more likely to experience a reliability event during those hours. To calibrate the threshold, the 

SPH method should be benchmarked against the ELCC method to determine a correlated value (e.g., 

higher or lower than 90%).  

A third way in which a utility or regulator could improve this method would be to use a seasonal, rather 

than annual, system capacity target. Most utilities in the Southeast use an annual capacity target, almost 

always corresponding to the summer value but perhaps occasionally the winter target. A seasonal 

system capacity target should take into consideration the variation of seasonal capacity ratings for the 

thermal generation fleet as well as the variability of seasonal loads.9 Making this improvement would 

likely result in two counteracting changes. On one hand, the 90% threshold would likely be applied to a 

slightly higher system capacity rating for winter (reflecting greater thermal efficiencies), reducing the 

number of winter hours studied. On the other hand, for utilities with substantial customer use of electric 

resistance space and water heating, winter peaks may be somewhat more variable than summer in a 

way that is naturally considered in the ELCC method but would be missed in the SPH method. In other 

words, the LOLP for a given load might be higher in winter than in summer, indicating an increase in the 

                                                           
8 Another benchmark, the weather normalized annual peak, was considered and tested for use in this method in 
place of the forecast annual peak. However, weather normalized annual peaks are not readily available for most 
utilities. A better reason for selecting the forecast annual peak assumption is that it is more closely related to 
capacity planning methods than the weather normalized annual peak. Whatever “optimal” system benchmark is 
chosen, it should be a routinely calculated, objective value. For example, if hourly LOLP data are available, those 
values could be used to increase the sophistication of this method. 
9 Seasonal peak forecast values were not used because available capacity should be representative of the forecast 
annual peak regardless of season. For example, winter capacity should be equal to, or greater than, the forecast 
annual peak plus reserve margin, even if the forecast winter peak is smaller than the summer peak. 
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number of winter hours studied. Because addressing both of these considerations would cancel out to 

some extent, a seasonal refinement would likely have little overall impact on the DCFs for renewable 

energy resources, particularly in the context of the summer peaking utilities studied in this analysis. 

4. Description of Study Data 
A. Annual Peak Demand Forecast 

Utilities file Federal Energy Regulatory Commission (FERC) Form 714 on an annual basis. This form 

includes a ten-year projection of peak demand. For this analysis, the annual forecast selected was the 

final forecast (for example, the 2010 peak demand forecast used in this project would be the one filed in 

2009). For unknown reasons, FERC does not have forecasts for all years for some utilities. 

 Duke Energy: Reflecting demand from Duke Energy Carolinas and Duke Energy Progress (or its 

predecessors) using FERC Form 714 data (1997-2012).  

 Southern Company: Reflecting demand from Alabama Power, Georgia Power, Gulf Power, 

Mississippi Power and Savannah Power (when applicable) using FERC Form 714 data (2001-

2012).  

 Tennessee Valley Authority: FERC Form 714 for the periods 1997-2002 and 2007-2012. For the 

period 2003-2006, the FERC Form 714 peak demand forecast values were not available from 

FERC. Weather normalized peak values obtained from a TVA graph were used instead. 

For the utilities studied in this project, the summer peaks were used in all cases because they were 

highest. As discussed in Section 6 of the report, the SPH method might be improved by utilizing winter 

peak forecast as well. 

B. Hourly Load 

FERC Form 714 also includes an annual report of system load on an hourly basis. One challenge with 

these data in general is that utilities follow different practices in dealing with daylight savings time, and 

even vary those practices from year to year somewhat. As discussed above, it is essential that the utility 

load data be accurately matched with renewable energy generation datasets. 

For Duke Energy and Southern Company, the hourly load data sources were the same as discussed 

above in Section 4.A. During discussions with TVA staff regarding calculations related to this analysis, 

discrepancies were identified between TVA’s internal data records and the data obtained from TVA’s 

FERC Form 714 filings. TVA supplied a complete dataset covering 1998-2012, which was used in lieu of 

the FERC Form 714 filings. 

C. Solar Power Output 

SACE contracted with Clean Power Research to simulate hourly production for two PV fleets – a fixed 

fleet and a tracking fleet. Specific sites were selected by SACE to be geographically dispersed across 

utility service areas, typically located near existing thermal generation, load centers or major 

transmission system intersections. 

 Duke Energy: 12 sites across service territory (see Figure 6(A)), studied as utility-scale projects 
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 Southern Company: 24 sites (see Figure 6(B)) studied as utility-scale projects, including 15 sites 

within the service territory, plus 9 sites in close proximity, subdivided into sites likely to be 

delivered to Georgia Power, and sites likely to be delivered to other Southern Company affiliates 

 Tennessee Valley Authority: 26 sites across service territory (see Figure 6(C)), with 10 higher 

performing sites selected to represent those most likely to be developed as utility-scale projects 

and the “all sites” average for fixed mount systems selected to represent large commercial 

installations, typically 5 MW or smaller on large rooftops or adjacent to business facilities 

Clean Power Research’s simulation used its SolarAnywhere FleetView modeling services, standard 

resolution (10 km x 10 km x 1 hour resolution). 

 Fixed tilt fleet: 1 MWAC, south-facing, 20-degree tilt angle 

 Tracking fleet: 1 MWAC, N/S tracking axis, 0-degree tilt angle, tracking rotational limit of +/- 45° 

All systems configured with 4,800 modules in 12 rows with a relative row spacing of 2.5 and combined 

DCPTC10 rating of 1,200.5 kW. A general derate factor of 85% was used along with an inverter with a CEC 

weighted average efficiency of 98% and an albedo of 0.15. 

Valid production data for smaller business and residential systems was not available for this project. 

Ideally, a simulated fleet of rooftop systems that takes into account the experience of other utilities and 

the typical roof designs of Southeastern buildings would need to be completed. An estimated cost for 

such an analysis was prepared by Clean Power Research to complement this study, but funding was not 

available from SACE or any utility to complete the analysis. 

                                                           
10 Direct Current Performance Test Conditions. Note that other than this specific reference to direct current, all 
capacity and energy results are reported in alternating current (AC) results. 



 Southern Alliance for Clean Energy 

November 2014  A-11 

Figure 6: Solar Power Study Sites for (A) Duke Energy, (B) Southern Company and (C) 
Tennessee Valley Authority 

(A) Duke Energy 

 

(B) Southern Company 

 
(C) Tennessee Valley Authority 

 

 

 

D. Regional Wind Power Output 

The Southern Wind Energy Association (SWEA) contracted with AWS Truepower to simulate hourly 

production for eight wind farm areas in the TVA service territory. The eight study sites, illustrated in 

Figure 7, were selected for study based on prior studies and data that identified good prospects.  The 

study areas were not selected as specific locations that any company is developing a wind project, and 

during the selection, neither SACE nor SWEA solicited or received developer input of this type, nor were 

any particular environmental suitability screens applied.   

The AWS windTrends national wind map is modeled at a 200 meter resolution and validated using a 

variety of surface station data.  For the TVA analysis, AWS utilized a total of 89 validation points in the 

following states of interest: Tennessee, Alabama, Mississippi, Arkansas, Missouri, Kentucky, and North 

Carolina. Due to the interpolation of data from these points to the sites of interest, the results should 

not be considered indicative of sites at the exact locations, but of wind conditions in the general area of 

the sites included in the analysis. Based on review of relevant data and consultation with various 

experts, the resulting wind resource is a reasonable representation of modeled data that might result 

from a more extensive prospecting and site selection process. 
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Because wind developers will prospect for better sites, the TVA analysis uses the data associated with 

the five best sites rather than all eight sites.  This does not mean that the areas associated with the 

three less attractive sites should be considered undevelopable; there may be geographic features in that 

region whose characteristics are not appropriately modeled at the resolution available in the AWS 

windTrends dataset. 

Due to the expense associated with obtaining these data, data for sites located within the Southern 

Company or Duke Energy service areas were not purchased. For Southern Company, the five sites from 

the SWEA data sited closest to its service territory were selected as indicative of resources that might be 

available for direct interconnection with the Southern Company transmission system. Regional wind was 

not studied for Duke Energy due to lack of suitable data. 

Figure 7: Wind Power Study Sites 

 

E. HVDC wind-generated power imports 

There are two proposed HVDC transmission projects anticipated to interconnect in the Southeast. Clean 

Line Energy Partners is developing the Plains and Eastern Line with a capacity of 3500 MW, connecting 

wind resources in or near western Oklahoma with TVA’s Shelby Substation (near Memphis, TN).11 

Pattern Energy is developing the Southern Cross Line, connecting wind resources on the ERCOT system 

with TVA and Southern Company in Mississippi, with two phases of 1500 MW bidirectional capacity.12 In 

turn, power from these projects can be wheeled through to other interconnected systems in the 

Southeast, subject to transmission constraints. 

Limited generation data are available for these projects. Clean Line Energy Partners contracted with 

3tier to simulate hourly production at two hypothetical wind farms in Oklahoma. Details of this study 

have been provided to TVA, and SACE was permitted to analyze these data subject to certain 

                                                           
11 See http://www.plainsandeasterncleanline.com/site/home 
12 See http://www.southerncrosstransmission.com/ 
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confidentiality protections. Wind industry experts were consulted and generally agree that similar wind 

profiles are likely to be available from the Texas Panhandle for supply to the ERCOT grid and then to the 

Southern Cross project. For this reason, the 3tier data were used as the basis for calculating the 

potential output from both proposed HVDC transmission projects. 

Wind power delivered via HVDC transmission differs in important respects from power delivered 

through a direct interconnection with a utility transmission system. One difference is that the delivery 

constraint at the point of interconnection (e.g., TVA’s Shelby Substation) is likely to be different from the 

peak power available from wind farms under contract for delivery. According to developers of both 

projects, it is likely that the transmission lines would “oversubscribe” their available capacity due to the 

basic business model for the project. During a few peak hours in which all wind farms under contract are 

operating at or very close to 100% of nameplate capacity, the transmission operator would need to 

utilize a contract clause to slightly curtail (or redirect) wind farm output to limit delivery to the operating 

constraint. While curtailments might appear to be costly, the cost would be compensated for during 

other hours in which the “oversubscription” would enable the transmission line to carry the “extra” 

power and thus increase revenues. 

There are several other significant differences. Clean Line’s HVDC technology may require a minimum 

throughput to maintain operating voltage. Pattern Energy’s business model envisions bi-directional 

flows, with the potential for energy from the Southeast to be utilized within ERCOT. System rules in 

ERCOT also provide for a certain degree of advance planning and firming of power delivery. Finally, for 

power delivered via wheeling through another utility’s transmission system, adjustments for additional 

line losses are necessary. 

Each of these factors was addressed to the extent feasible in the development of the “as-delivered” 

HVDC wind power hourly capacity factors. 

 Duke Energy: Consistent with input from various experts, the Clean Line HVDC resource was 

assumed, using oversubscription factors and a minimum delivery threshold selected by SACE to 

represent a likely business model. Line losses on the TVA system (used for wheeling) were set at 

3% based on TVA practices. Due to anticipated transmission constraints, this resource was 

limited to 500 MW delivered. 

 Southern Company: Clean Line and Pattern Energy’s projects were modeled separately. The 

Clean Line HVDC resource was modeled the same as for Duke Energy except that no specific 

transmission delivery constraint was identified. Pattern Energy’s project was modeled using 

oversubscription factors selected by SACE to represent a likely business model. 

 Tennessee Valley Authority: Consistent with the preferences of TVA planners, a generic HVDC 

resource was created. The oversubscription factor and minimum delivery threshold were set at 

the average of those for the business plans assumed for the Clean Line and Southern Cross 

projects. 

It should be emphasized that this resource characterization is not an attempt to model specific contract 

terms. Instead, the “as-delivered” characterization reflects operating constraints and opportunities in a 

likely business model that would form a starting point for negotiating specific terms and conditions that 

might establish operational guidelines. 
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5. Application of the SPH Method at Initial Stages of Renewable Energy Resource 

Development 
The dependable capacity factors (DCF) for each resource, for each utility system, are summarized in  

Figure 8. As discussed in Section 1, the DCF is calculated as the simple average of capacity factors during 

winter and summer peak hours. Peak hours are defined as hourly loads exceeding 90% of the forecast 

annual reserve requirement, which is the forecast annual peak plus reserve margin.  

Values are presented for winter, summer, and annual (planning year) periods. Because most utility 

resource planning models require distinct winter and summer capacity ratings for each resource, the 

annual DCF is provided mainly as reference to help illustrate the relative weight of each seasonal 

capacity rating. Each DCF is compared to the utility’s current publicly-provided rating (if available). The 

annual capacity factor (CF) for each resource is also presented for comparison; these values area simple 

average (percent of rated annual MWAC output), not requiring the SPH (or any other) method. 

Because Southern Company’s distribution utilities contract for power individually (although subject to a 

joint dispatch arrangement), DCF values for solar power were calculated separately for interconnection 

to Georgia Power Company and to the other three companies. This was also important due to the more 

advanced state of Georgia Power’s adoption of solar power as discussed in Section 6 below.  
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Figure 8: Annual and Seasonal Dependable Capacity Factors, Assuming No Substantial Prior 
Renewable Energy Development 

 Solar – Tracking Solar – Fixed Regional Wind 
HVDC Wind 

Imports 

 
Duke Energy (North and South Carolina) 

Annual CF 23% 21% - 57% 

Summer DCF 66% 56% - 43% 

Winter DCF 12% 10% - 67% 

Average DCF 63% 54% - 44% 

Duke Adopted DCF13 46% 46% 13% n/a 

Southern Company – Georgia 

Annual CF 24% 21% - - 

Summer DCF 61% 51% - - 

Winter DCF 23% 17% - - 

Average DCF 61% 51% - . 

Southern Company – Alabama, Mississippi & Florida 

Annual CF 24% 21% 38% 66% / 57% 

Summer DCF 61% 53% 10% 46% / 56% 

Winter DCF 16% 11% 36% 84% / 96% 

Average DCF 60% 52% 10%14 47% / 57%15 

Southern Adopted DCF n/a n/a n/a n/a 

Tennessee Valley Authority 

Annual CF 23%  20% / 20% 38% 62% 

Summer DCF 66% 56% / 53% 9% 53% 

Winter DCF 14% 13% / 14% 36% 62% 

Average DCF 60% 51% / 49% 12% 54% 

TVA Adopted DCF 68% 50% / 50%16 14% 14% 

                                                           
13 Duke Energy Carolinas, Integrated Resource Plan (September 2014); and Duke Energy Progress, Integrated 
Resource Plan (September 2014). For solar, an average of the DEC 46% and DEP 44% “contribution to peak load” 
value is used. 
14 Proxy data from sites in TVA service area, but close to Alabama Power or Mississippi Power service areas. 
15 Clean Line Energy’s Plains & Eastern Line and Pattern Energy’s Southern Cross HVDC projects reported 
separately. The differences are mainly due to losses imposed by intermediate AC transmission wheeling of the 
Clean Line power through TVA; Pattern Energy would be delivered directly. The underlying wind data are identical. 
16 For TVA, the first figure refers to utility-scale fixed mount solar systems, and the second figure refers to 
commercial-scale fixed mount solar systems. For TVA, the higher performing systems were concentrated in the 
western portion of the TVA system, so the “all sites” solar production data were used to represent commercial 
scale systems. For other utilities, higher performing systems were not as geographically concentrated so this 
distinction was not utilized. 
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6. Scenarios for Buildout of Renewable Energy Resource Development 
One reason the SHP method was developed was to investigate the impact of large-scale renewable 

energy development on utility systems. As renewable energy resources are deployed at scale, the value 

they offer to the system as capacity resources changes.17 The DCF of each individual resource is affected 

significantly by the deployment of any type of variable resource. 

As a result of some of the initial calculations during the analysis, the renewable energy resource 

development scenarios were selected and studied consistent with these general patterns. 

 DCF values for each specific solar resource (i.e., commercial-scale fixed mount solar systems) 

were affected by the total solar resources deployed, regardless of technology or type, because 

the performance of each solar resource technology was closely correlated with the others. (This 

is illustrated below, see Figure 11.) 

 Solar tracking resources appeared highly advantageous in terms of DCFs relative to fixed mount 

systems. However, since the DCFs decline significantly (see Figure 11), it is assumed that while 

tracking systems might dominate utility-scale development during the early phases of 

development, fixed mount systems could predominate overall. 

 DCF values for regional wind resources and HVDC wind resources were not as closely correlated, 

so are best thought of as distinct resources. (This can be seen by comparing Figure 12 with 

Figure 13.) 

 Significant differences in DCF values occurred only after development of roughly a gigawatt 

(GW) of additional renewable energy (see Figure 12 and Figure 13). 

Based on these patterns, as well as information about the schedules of various projects or utility 

regulatory proceedings, a renewable energy development scenario was developed for each utility in the 

study. For example, utility avoided cost proceedings typically occur on a biennial basis, so each utility 

scenario is expressed as three to four “tranches,” representing blocks of renewable energy that could be 

developed in two or three year periods.  

The scenarios were developed for each specific utility based on publicly available information about 

existing projects, potential projects and general industry trends. In general, the goal was to have a 

balanced portfolio of about 4,000 MW of solar and wind each. This was not precisely achieved due to 

the lack of suitable data for regional wind projects. The assumed solar and wind capacity levels for each 

scenario are presented in Figure 9. 

                                                           
17 Andrew Mills and Ryan Wiser, “An Evaluation of Solar Valuation Methods Used in Utility Planning and 
Procurement Processes,” LBNL-5933E (December 2012). 
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Figure 9: Renewable Energy Development Scenarios (MW Nameplate Capacity) 

 
Solar – 

Tracking 
Solar – 
Fixed 

Regional 
Wind 

HVDC Wind 
Imports 

Total 

Energy 
(Annual 
Capacity 
Factor) 

Duke Energy (North and South Carolina) 

Tranche 1  1,089 - - 1,089 1% 

Tranche 2 1,000 911 - 500 2,411 4% 

Tranche 3 500 500 - - 1,000 1% 

Duke Total 1,500 2,500 - 500 4,500 6% 

 
Southern Company – Georgia 

Tranche 1 750 900 - - 1,650 2% 

Tranche 2 250 - - - 250 9% 

Tranche 3 250 250 - - 500 2% 

Southern Company – Alabama, Mississippi & Florida 

Tranche 1 250 150 100  500 2% 

Tranche 2 750 250 150 2,50018 3,650 9% 

Tranche 3 250 250 250  750 2% 

Southern Total 2,500 1,800 500 2,500 7,300 13% 

 
Tennessee Valley Authority19 

Tranche 1 500 175 / 550 350 - 1,575 2% 

Tranche 2 50 75 / 150 150 2,500 2,925 9% 

Tranche 3 700 150 / 300 100 750 2,000 4% 

Tranche 4 400 300 / 600 200 - 1,500 2% 

TVA Total 1,650 
700 / 

1,60020 
800 3,25021 

8,000 16% 

 

7. Application of the SPH Method with Large Scale Renewable Energy Resource Development 
Utilizing the scenarios described above, the resulting DCFs can be specified on a summer and winter 

basis. (The calculation method is described in Section 1, Steps 4-6) The DCFs calculated for Tranche 1 

applies the SPH method with no adjustment to load shape. Beginning with Tranche 2, the load shape is 

adjusted to net out the effects of the resources included in Tranche 1, and so forth.22 As a result, the 

DCF used for a specific technology resource in subsequent tranches is typically lower than for the same 

resource included in the first tranche. 

                                                           
18 Clean Line Plains & Eastern: 1500 MW; Pattern Energy Southern Cross 1000 MW. 
19 For the TVA analysis, existing Midwestern wind contracts were not studied because data regarding their hourly 
production were not available. TVA applies a 14% dependable capacity factor for existing resource contracts. 
20 The first figure refers to utility-scale fixed mount solar systems, and the second figure refers to commercial-scale 
fixed mount solar systems. See note 16. 
21 This value assumes that the imports are sourced equally from the two proposed HVDC projects. 
22 A degree of regulatory lag, similar to what occurs in avoided cost proceedings, is assumed in the DCF calculation. 
So the DCF established for Tranche 2 represents a midpoint prior to the full completion of Tranche 1 and so forth. 
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Figure 10: Dependable Capacity Factors, Using Renewable Energy Development Scenarios 

Summer DCFs Solar – Tracking Solar – Fixed Regional Wind 
HVDC Wind 

Imports 

Duke Energy (North & South Carolina) 

Tranche 1 66% 56% - 43% 

Tranche 2 51% 39% - 35% 

Tranche 3 44% 34% - 37% 
 

Southern Company – Georgia 

Tranche 1 61% 51% - - 

Tranche 2 40% 30% - - 

Tranche 3 34% 24% - - 

Southern Company – Alabama, Florida & Mississippi 

Tranche 1 61% 53% 10% 46% / 56%23 

Tranche 2 41% 32% 12% 23% / 29% 

Tranche 3 35% 27% 12% 22% / 28% 
 

Tennessee Valley Authority 

Tranche 1 66% 56% / 54%24 9% 53% 

Tranche 2 56% 45% / 43% 9% 28% 

Tranche 3 48% 37% / 36% 10% 22% 

Tranche 4 39% 29% / 27% 11% 21% 
 

Winter DCFs Solar – Tracking Solar – Fixed Regional Wind HVDC Wind Imports 

Duke Energy (North & South Carolina) 

Tranche 1 12% 10% - 67% 

Tranche 2 6% 5% - 58% 

Tranche 3 5% 4% - 60% 
 

Southern Company – Georgia 

Tranche 1 23% 17% - - 

Tranche 2 6% 4% - - 

Tranche 3 4% 3% - - 

Southern Company – Alabama, Florida & Mississippi 

Tranche 1 16% 11% 36% 84% / 96%23 

Tranche 2 3% 2% 32% 37% / 45% 

Tranche 3 2% 1% 28% 33% / 38% 
 

Tennessee Valley Authority 

Tranche 1 14% 13% / 14%24 37% 63% 

Tranche 2 8% 7% / 7% 34% 28% 

Tranche 3 4% 4% / 4% 35% 16% 

Tranche 4 3% 3% / 3% 34% 20% 

                                                           
23 Clean Line Energy’s Plains & Eastern Line and Pattern Energy’s Southern Cross HVDC projects reported 
separately. The differences are due to business model and losses imposed by intermediate AC transmission 
wheeling standards. The underlying wind data are identical. 
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A. Solar Power 

Utility-scale solar power resources in the three utility service areas begin at very similar levels for both 

fixed mount systems (49-54% DCFs) and tracking systems (60-63%). However, as illustrated in Figure 11, 

at higher levels of deployment, the DCFs diverge somewhat. 

The figure bears some explanation. Each point along the DCF curve represents the DCF that would be 

applied to the respective tranche, based on prior renewable energy development. For example, it is 

assumed that no renewable energy development occurs before Tranche 1 (the system load shape is 

assumed), so the total solar resource capacity deployed is 0 MW for purposes of calculating the Tranche 

1 DCF. Then for Tranche 2, the amount of solar resource capacity deployed in Tranche 1 (see Section 6) 

is used to determine the seasonally modified net annual peaks for purposes of calculating the Tranche 2 

DCF, as described in Step 4 (see Section 1). 

Figure 11: Impact of Scale of Development on Solar Power Dependable Capacity Factors 

 

One possible reason that the DCF curves diverge somewhat is that different amounts of wind are 

deployed (the curve is illustrated as a function of solar resource capacity deployment only to emphasize 

the primary correlation). For Duke Energy, which has the least wind power included in its scenario, the 

DCF values does not decrease as much as for the other two utilities. The overall finding for solar is that 

                                                           
24 The first figure refers to utility-scale fixed mount solar systems, and the second figure refers to commercial-scale 
fixed mount solar systems. See note 16. 
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there is a consistent alignment of solar to system load shape across the Southeast, and the impact of 

solar development on DCF values decreases in a consistent manner.25  

B. Regional Wind Power 

Analysis of regional wind resources is less conclusive than for solar due to the limited data available for 

study. As discussed in Section 4-D, the TVA and Southern Company regional wind data are drawn from 

the same eight sites in the TVA service territory. (Even with identical data, differences in the DCF would 

be likely since the system load shapes differ.) 

The main conclusion that can be drawn is that as renewable energy – mainly solar and HVDC wind 

imports in these scenarios – is developed, the DCF for regional wind increases, as illustrated in Figure 12. 

(Other relationships were examined, such as looking at wind resource capacity deployed, but the best 

relationship appeared to be with overall renewable energy deployment.) This occurs due to changes in 

the seasonally modified net annual peak, which is adjusted for renewable energy resource capacity 

installed during preceding tranches. As the seasonally modified net annual peak decreases, different 

hours now meet the 90% threshold requirement used to select the peak hours. Capacity factors for wind 

resources during these newly selected net peak hours are evidently significantly higher. 

Figure 12: Impact of Scale of Development on Wind Power Dependable Capacity Factors26 

 

Figure 12 suggests that in-region wind DCFs increase slightly as renewable energy is deployed. However, 

as discussed in Section 4-D, regional wind data used in the TVA and Southern Company analyses were 

subsets of the same dataset from the TVA service territory. Beyond recognizing that the DCFs are similar 

                                                           
25 Another impact of wind resources on solar DCFs is illustrated by the sharp, but small, drop in TVA’s DCF values 
between Tranches 2 and 3 which is associated with by wind resource deployment in the TVA scenario. 
26 Duke Energy is not included in this figure because regional wind was not included in the development scenario 
for Duke Energy due to lack of available data. 
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and may exhibit similar trends, the data used in this study are not adequate to reach definitive 

conclusions about dependable capacity factors for wind in the Southern Company service territory. 

C. HVDC Imported Wind Power 

In the case of HVDC imported wind power, two distinct features are illustrated (see Figure 13) that are 

not apparent for other resources. First, the initial introduction of primarily solar power in Tranche 1 (see 

Figure 9) can result in a significant decrease in the DCF for HVDC imported wind power, but as both wind 

and solar are added in subsequent tranches, the DCF for HVDC imported wind power remains relatively 

stable (most notably in contrast to solar power, see Figure 11). The second distinct feature is that this 

effect does not occur for Duke Energy, which could be explained by a significantly different system load 

shape. 

In addition to those features, other differences in Figure 13 can be explained by the variation in the 

additional transmission losses applied to the Clean Line load shape when delivered to Southern 

Company and Duke Energy. Because the Clean Line project interconnects only to the TVA system, but 

the Pattern Energy project interconnects to both TVA and Southern Company, the Clean Line project’s 

delivered energy and capacity are higher for the TVA system than for the more distant utility systems. As 

discussed in Section 4.E, the underlying wind data used to study both transmission projects are identical. 

Figure 13: Impact on Scale of Development on HVDC Imported Wind Power Dependable 
Capacity Factors 

 

D. Combined Analysis of Renewable Energy Resources 

It is highly unlikely that any major utility will rely exclusively on a single renewable energy resource. As 

illustrated above, there can be significant interactions between the resources in terms of their 

dependable capacity value. For example, a utility that invests heavily in solar development for several 

years could find that the DCF for wind resources increases as the system peak hours are shifted into 
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periods with relatively strong wind power production. The cliché that the whole is greater than the sum 

of the parts appears to apply. 

One concern may be that the contribution of renewable energy resources to system dependable 

capacity may be highly sensitive to changes in the specific combination and deployment schedule of 

renewable energy resources. This does not appear to be the case, for two reasons. 

First, as illustrated in Figure 14, even though there are significant differences between the utility 

scenarios (see Section 6), the resulting DCFs are not very different. It is clearly important to provide a 

reasonable forecast for the general ratio of resource technologies likely to be developed, but modest 

shifts in those ratios are not likely to substantially affect the total dependable capacity. 

Second, the illustration also shows that as the resources are deployed, a renewable energy resources 

portfolio including a mix of strategies results in only a modest diminishing of the DCF as the resource mix 

is built out. In contrast, a utility that emphasizes a single resource could see a much steeper reduction in 

DCFs, as illustrated in Figure 11 and Figure 13. For planning purposes, a utility could select DCFs based 

on a reasonable forecast of the ratio of different technologies, conduct a capacity planning study, and 

then adjust the DCFs to correspond with the final plan. 

Figure 14: Impact on Scale of Development on Blended Renewable Energy Resource 
Dependable Capacity Factors 
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Appendix B  

Net Effective Reserve Margin Analysis: 

Impact of Generic Renewable Energy Resources on System Reliability 

As discussed in Appendix A, utilities plan for a target reserve margin that is designed to minimize the 

overall cost of reliability to the customer. The System Peak Hours (SPH) method provides a 

measurement of an appropriate dependable capacity factor (DCF) forecast for variable energy resources 

for use in resource planning and other energy forecasting studies. While renewable energy resources 

generally perform very well during high demand periods, there may be high demand periods in which 

variable resources do not generate as much power as indicated by the DCF measurement. On the other 

hand, there will also be similar periods in which those resources generate more power than indicated by 

the DCF measurement. 

Adding enough renewable energy to Southeastern utility systems to meet 10-20% of annual energy 

demand should trigger both of these counteracting effects on the level of risk that a utility has to 

manage. To balance these effects appropriately, a useful measurement of dependable capacity should 

be high enough to reflect how productive renewable energy will be during system peak hours and thus 

contribute to the system’s capacity to serve load. Yet it should not be so high that it increases the risk 

that a centrally planned utility will have less capability to provide reliable service. In comparison to other 

averaging methods discussed briefly in Appendix A, the SPH method is designed to avoid misleadingly 

high or low results by arbitrarily excluding (or emphasizing) certain hours that are important (or 

unimportant) for a reliability measure. 

For a utility system without significant variable renewable energy resources, the standard for 

determining the correct amount of system capacity is the target reserve margin. Most utilities maintain 

relatively up-to-date reserve margin studies, which consider the on-peak performance attributes for the 

existing mix of generation resources and characteristics of the utility systems’ customer demand. At the 

target reserve margin, the loss of load probability (LOLP) is maintained at an economically optimal level. 

By determining DCFs such that the target reserve margin is unaffected, the SPH method assumes a 

ceteris paribus approach, where the LOLP is unaffected by any changes to the characteristics of the 

generation mix or customer demand other than the introduction of renewable energy resources. This is 

similar to the Effective Load Carrying Capability (ELCC) method (described in Appendix A) which holds all 

other aspects of the system constant, while calculating the difference in loads that can be reliably served 

by a generation system “with” and “without” a defined level of renewable energy resources.1 

In order to quantitatively demonstrate how effectively the SPH method balances the reliability effects of 

variable resources, a Net Effective Reserve Margin (NERM) is calculated to illustrate the effect of 

renewable energy on system reserves. Like the ratio method highlighted in Figure 5, the NERM 

technique is intended to act as a quantitative test to illustrate whether a proposed DCF is balanced and 

the capacity is “right.”  

 

                                                           
1 MISO, Planning Year 2014-2015 Wind Capacity Credit (December 2013). 
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As discussed in the main report, even if the number of hours with higher reliability risks is very low, it 

would be reasonable to be concerned that there could be specific hours in which a system that depends 

on high levels of renewable energy might be at greater reliability risk due to highly unusual 

circumstances. By considering aggressive, but realistic scenarios of renewable energy development in 

the context of actual system conditions for over a decade, the likelihood that an extreme event has been 

overlooked has been minimized. The NERM technique provides a finer resolution measurement of the 

changes in risks that the utility should plan to manage.  

1. Relationship Between a Target Reserve Margin and a Dependable Capacity Factor 
As discussed in Appendix A, utilities plan for a target reserve margin that is designed to minimize the 

overall cost of reliability to the customer. The target reserve margin is an optimal value: insufficient 

reserves put customers at risk of either system failures or expensive short-term market purchases, but 

excessive reserves guarantees that customers will pay for capacity that may not be sufficiently utilized 

to justify the cost. Most target reserve margins are set at a level that the utility believes will 

demonstrate achievement of an industry accepted reliability standard of 1 day in 10 years expected loss 

of load (LOLE).  

The more difficult methods to measure DCFs use a loss of load probability (LOLP) calculation to apply the 

utility’s reliability standard. While not explicitly relying on LOLP data, the SPH method is designed to 

track the LOLP concept closely by assuming a ceteris paribus approach, where the LOLP is unaffected by 

any changes to the characteristics of the generation mix or customer demand that occur other than the 

introduction of renewable energy resources. This is similar to the ELCC method, which holds all other 

aspects of the system constant, while calculating the difference in loads that can be reliably served by a 

generation system “with” and “without” a defined level of renewable energy resources.2 

To implement the ELCC method or generate LOLP data, the utility must utilize robust distributions of 

load, weather, and unity performance uncertainty, including all production cost variables and unit 

constraints.3 For example, MISO’s most recent wind capacity report determined the “capacity credit at 

176 individual wind [Commercial Pricing Nodes],” using a model that incorporates “historic operation 

performance data for all conventional unit types in the MISO system.”4 As with a robust reserve margin 

study, such a comprehensive study represents a significant resource commitment by a utility towards 

effective planning and would not likely be conducted frequently. Exploring a large number of alternative 

scenarios in an ELCC study effectively requires streamlined simulation practices.5  

The key to the usefulness of the ELCC method is its ability to isolate the reliability effects for the 

resource in question from those of other resources. But utilities routinely plan for future development 

of generation resources without requiring a new reserve margin study (or an ELCC study) because utility 

integrated resource plans are conceptual guides to future investment choices. Detailed reserve margin 

                                                           
2 MISO, Planning Year 2014-2015 Wind Capacity Credit (December 2013). 
3 Carden, K, Modeling Resource Adequacy Impacts of Integrating Intermittent Resources, Astrape Consulting 
(February 2013). 
4 MISO, Planning Year 2014-2015 Wind Capacity Credit (December 2013), p. 4, 7. 
5 Pfeifenberger, JP et al, Resource Adequacy Requirements: Reliability and Economic Implications, prepared for the 
Federal Energy Regulatory Commission by The Brattle Group and Astrape Consulting (September 2013), p. 18. 
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or ELCC studies typically do not need to be updated frequently unless there are substantial system 

changes or other financial considerations such as capacity market auctions. 

Ultimately, the purpose of establishing a valid DCF for variable resources is to ensure that resource plans 

developed using such factors are unlikely to affect the utility’s reliability to such a degree that the results 

of a reserve margin study would change significantly. By measuring the DCF as the average capacity 

factor during peak hours, and by ensuring that those peak hours are the peak hours which would occur 

if a resource was deployed at substantial scale, the SPH method should closely track measurements 

made with LOLP data such as the ELCC method. 

2. Net Effective Reserve Margin (NERM) Technique 
Utilities typically establish target reserve margins such that “the cost of additional reserves plus the cost 

of reliability events to the customers [are] minimized.”6 It follows, therefore, that increasing or 

decreasing the reserve margin would result in higher costs to the customer. 

To illustrate the effect of imposing these higher costs on the customer, Figure 1 contrasts the effective 

reserves during each hour of a thirteen-year period for the Tennessee Valley Authority (TVA). In this 

illustration, the effective reserves are defined as follows: 

 RM = Reserve Margin 

 Effective reserves (Hour n) = (1 + RM) x Forecast Annual Peak – Load (Hour n) 

 RME = Effective reserve margin (Hour n) = Effective reserves (Hour n) / Forecast Annual Peak 

This effective reserve margin curve can be viewed as the inverse of a load duration curve, with the 

multi-year dataset normalized to the forecasted annual peak.  

The illustration also shows two hypothetical alternatives to TVA’s 15% reserve margin: one in which TVA 

reduced its reserves to only 12%, and another in which it increased its reserves to 18%. It follows from 

the definition of the target reserve margin that if TVA used either a 12% or an 18% reserve margin, costs 

to the customer would not be minimized. 

                                                           
6 TVA 2011 IRP 
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Figure 1: Effective Reserve Margin for Tennessee Valley Authority for 12%, 15% and 18% 
Target Reserve Margins 

 

The NERM technique relies on this deduction to identify that any resource change which results in the 

effective reserve margin departing from the ideal 15% curve as having the potential to increase costs to 

the customer. Departures above the 15% curve reduce the LOLP for those hours, but also increase 

carrying costs for unnecessary capacity, and may be offset by lower costs in other respects (e.g., 

reduced fuel costs). Departures below the 15% curve increase the LOLP, and represent the costs of 

potential reliability events to the customer. (To quantify the net effect, it would be necessary to apply 

utility cost data and its system LOLP, but then an ELCC measurement would be practical and preferred.) 

If the net effect on the LOLP is an increase, the costs of potential reliability events to the customer could 

be offset through reliability-enhancing investments. This analysis does not study such investments but 

rather seeks to illustrate whether such a concern is even worth considering. 

The effective reserve margin considers the utility system in its base configuration, a configuration that 

should be reasonably similar to the utility system studied to establish the target reserve margin. In order 

to study a utility system modified to include a substantial amount of variable resource deployment, the 

net effective reserve margin is calculated. In other words, the NERM technique is a way to estimate the 

impact of non-dispatchable energy resources on the dispatchable reserves required to maintain 

reliability. The assumption is that the LOLP curve for the net load is the same as the LOLP curve for the 

base system load, which seems reasonable as the system serving the net load is likely to be very similar 

to the base system. 

The net effective reserve margin calculation is a modified version of the effective reserve margin, and is 

illustrated in casual loop diagram form in Figure 2. The NERM curve is associated with a specific scenario 
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(calculated using the SPH method) for summer and winter. 7 The hourly capacity factor (CF) is obtained 

from the resource data files described in Appendix A. 

 NDCS = DCFS x NC  

 Net effective reserves (Hour n) = ((1 + RM) x Forecast Annual Peak - NDCS) -  

(Load(Hour n) - NC x CF(Hour n)) 

 Net RME = Net effective reserves (Hour n) / (Forecast Annual Peak - NDCS) 

 For winter, substitute NDCW = DCFW x NC 

The resulting NERM curves for specific resource deployment scenarios are presented for TVA, Duke and 

Southern Company in the following sections. First, the results of the most aggressive level of renewable 

energy scenarios tested for this project are reviewed. Next, individual resource studies are presented 

utilizing hypothetical 4 gigawatt (GW) development levels for individual technologies. It is unlikely that 

any of these utilities would invest in 4 GW of a single variable resource technology. Because the blended 

resource development scenarios demonstrate that DCFs are affected by the degree to which all variable 

resources are developed, it would be unreasonable to rely on these individual resource studies for 

planning purposes. However, it is interesting to compare the various resources and note differences in 

the impact of each resource on net effective reserve margins.  

Figure 2: Net Effective Reserve Margin (NERM) Technique Calculations 

 

                                                           
7 The planning year is defined as beginning June 1. Winter months are November through March. 
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3. SPH Method Validation Using Aggressive Renewable Energy Development Scenarios 
The overall impact of substantial renewable energy resources on the effective reserve margins of the 

utilities studied in this analysis is to increase hourly reserve levels during the vast majority of operating 

hours. For example, renewable energy with a nameplate capacity of 7.3 GW on the Southern Company 

system would reduce dispatchable generation requirements by about 3.1 GW. The 7.3 GW deployment 

represents roughly 20% of forecast annual peak loads for the Southern Company system, and is rated at 

an average DCF of 42.5%. Even with dispatchable capacity requirements reduced by roughly 10%, Figure 

3 illustrates how effective hourly reserves (dispatchable generation plus hourly renewable energy 

generation) generally exceed the effective reserve margin. This effect is by design, the SPH method is 

designed to identify the level of generation that can be relied upon, but of course hourly generation 

often exceeds the dependable capacity. 

Figure 3: Net Effective Reserve Margin for Southern Company, 7.3 GW Renewable Energy 
Scenario 

 

Similar NERM curves can be produced for individual resource development scenarios, and for all utilities 

studied in this analysis. Any impression that well planned renewable energy deployments will lead to 
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 For Duke Energy (North and South Carolina), there were no hours in 15 years with reduced 

reserve margin relative to the baseline.8  

 For Southern Company, renewable energy deployment resulted in 6 hours in 10 years with 

reduced reserve margin relative to the base case. The increase was less than 1% for all but 2 of 

the 6 hours. 

 For Tennessee Valley Authority, renewable energy deployment resulted in 11 hours in 15 years 

with reduced reserve margin relative to the base case. The increase was less than 1% for all but 

4 of the 11 hours. 

The NERM curve also exhibits the benefit of substantially fewer hours with a NERM of less than 25% 

relative to the base effective reserve margin. These effects are quantified and elaborated on below. 

                                                           
8 The effective reserve margin curve for Duke Energy illustrates that the number of hours with an effective reserve 
margin for the base system is roughly 35% higher than for Southern Company or TVA. This may suggest that the 
reserve margins for Duke Energy carry more risk and less cost than those of Southern Company and TVA. 
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Figure 4: Net Effective Reserve Margin for (A) Duke Energy, (B) Southern Company and (C) 
Tennessee Valley Authority with Substantial Renewable Energy Development 
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evidently increased (an adverse effect). When the net effective reserve margin curve dips significantly 

below the effective reserve margin curve, the data indicate an increased likelihood of a reliability 

incident. 

However, counteracting that effect is the large reduction in the number of hours with a low net effective 

reserve margin (a positive effect). It is not possible to quantitatively demonstrate which effect is larger.9 

It is statistically more probable, of course, that the event would occur during an hour with a lower 

effective reserve margin because quite obviously the utility system has less tolerance for generator 

outages at that level. So when dealing with an increase in probabilities on the one hand, and a decrease 

in the number of hours with significant probabilities on the other, a quantitative solution can only be 

calculated in an ELCC study framework. Nonetheless, it is possible to arrive at some quantitative 

observations.  

Two quantities are calculated to represent these competing effects.  

 Higher risk hours: The number of hours that would need to be removed from the net effective 

reserve margin curve in order for that curve to be substantially identical to or in excess of the 

effective reserve margin curve.10  

 Reliability ensured hours: The reduction in the number of hours with a significant probability of 

reliability incidents.11  

As illustrated in Figure 5, the ratio of higher risk hours to reliability ensured hours is 1:76 or less, with a 

clearly positive impact appearing to occur on the Duke Energy system on which no higher risk hours 

result from setting capacity values based on the SPH method. 

Figure 5: Impact of Substantial Renewable Energy Development Scenarios on Reliability 

 Higher Risk Hours 
Reliability 

Ensured Hours 
Ratio 

Duke Energy (North and South Carolina) 0.0 %   (0) 0.734 % (558) 0:100 

Southern Company 0.007 %   (6) 0.549 % (481) 1:80 

Tennessee Valley Authority 0.008 % (11) 0.639 % (840) 1:76 

 

Thus, NERM technique illustrates that the SPH method can support planning outcomes that do not 

adversely affect the level of reserves on utility systems on a daily or hourly basis. Some hours are more 

reliable, some hours are less reliable. Concentrating on lower reliability in some particular hour would 

ignore the improvements in many other hours. In other words, the SPH method is an effective tool for 

                                                           
9 The underlying methods of a target reserve margin study involve stochastic evaluation of probabilities. For 
example, in a random draw of circumstances, the utility may not experience a reliability event during an hour with 
an effective reserve margin of 10%, but might experience a reliability event during an hour with an effective 
reserve margin of 20%. 
10 In other words, the number of hours in which the utility might consider taking additional measures to ensure no 
added risk of a reliability incident. 
11 For this project, the number of hours was compared up to the 25% (net) effective reserve margin level, 
consistent with the SHP method use of a 90% below forecast annual peak plus a 15% target reserve margin. 
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ensuring that renewable energy can be studied in a resource planning model without compromising 

reliability. 

These reliability effects were also examined for winter peaking concerns, as discussed in Section 4 of the 

report. In Figure 6, the three utilities are analyzed by estimating renewable generation output during 

hours in which winter loads exceed 95% of the annual peak forecast by the utility for the corresponding 

planning year.  

Figure 6: Renewable Generation During Winter Peak Hours for (A) Duke Energy, (B) Southern 
Company and (C) Tennessee Valley Authority 
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4. Individual Resource Studies of SPH Method Using 4 GW Development Levels 
Although several utilities have published estimates for DCFs (or equivalent terms) at current system 

levels, none has yet published a projected value based on substantial development of renewable energy. 

As illustrated in Figure 4 of the main report, studies by a number of utilities have demonstrated that the 

dependable capacity for variable resources decreases with significant increases in resource deployment. 

Evidently, the relationship varies by resource, utility and planning assumptions (such as deployment of 

other renewable energy resources). 

It is unlikely that any Southeastern utility would invest in 4 GW of a single variable resource technology. 

Even if solar is emphasized by some utilities, a variety of technologies and interconnection types would 

occur. Each combination of technology and interconnection type can result in a different DCF value. As 

the blended resource development scenarios demonstrate, DCFs are affected by the degree to which all 

variable resources are developed. For these reasons, it would be unreasonable to rely on these 

individual resource studies for planning purposes. 

Nonetheless, it is interesting to compare the various resources and note differences in the impact of 

each resource on net effective reserve margins. In combination with the findings related to blended 

resource scenarios, utility planners can use individual resource studies to inform their planning 

decisions. Accordingly, hypothetical 4 gigawatt (GW) development levels for individual technologies are 

provided for review. As illustrated in Figure 7,12 using the SPH method to calculate DCFs for individual 

resources does not result in an obvious increase in risk of resource inadequacy, even at 4 GW of 

nameplate resource deployment. 

                                                           
12 One example is provided for each of the four technologies studied. Graphs for other utilities studied look similar 
for each resource. 
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Figure 7: Examples of Single Resource Scenarios on Net Effective Reserve Margin 
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Appendix C 

Impact of Renewable Energy on the Ramping of Conventional Generation Plants in the 

Southeast 

To maintain reliability, utilities must continuously match the demand for electricity with supply on a 

second-by-second basis. Much of this is automated, but utilities must plan for and actively control 

power plant units to increase or decrease generation in response to changes in demand. As renewables 

are deployed on the grid, a portion of the utility’s supply capacity is represented by variable generation 

resources with more limited (or nonexistent) control capabilities. 

Net load curves are used to illustrate the utility’s challenge to direct controllable resources to match 

both variable demand and variable supply. A net load is calculated by subtracting the forecasted 

electricity production from variable generation resources, wind and solar, from the forecasted load. 

One specific concern is that utilities will face challenges of supplying large amounts of power within a 

short time period to replace the electricity lost by solar power as the sun sets. A more general concern is 

that utilities will find it more costly or risky to meet operating challenges associated with variable 

renewable energy resources. As discussed in the main paper, a substantial problem of this nature is 

unlikely to appear in the Southeast. 

Two analyses were conducted to reach this finding. In the first analysis (see Section 1), two historical 

episodes were selected from each utility dataset to illustrate extreme operating conditions. One episode 

was selected to represent a system peaking event, identifying a multi-day period with peaks in excess of 

the utility’s forecast annual peak.1 The second episode was selected to represent a low load event with 

high renewable energy generation, identifying a period in which renewable energy is at its highest share 

of total electric generation. 

In the second analysis (see Section 2), the entire data set was examined statistically for individual 

renewable resources (e.g., in-region wind), as well as a scenario of combined renewable resources. 

Ramp rates were calculated over 1-hour increments.2 This provided a broad view, considering hours in 

which renewable energy improved system ramp rates as well as those in which ramp rates became 

more challenging. 

1. Case Studies on Episodes of Extreme Operating Conditions  
Case studies of extreme operating conditions are often used to demonstrate the impact of variable 

renewable energy on utility systems. The two most extreme conditions would be system peaking events 

and low load events (associated with high renewables penetration).  

                                                           
1 Each of the six case study episodes span almost the full range of potential renewable energy generation. The 
Southern Company and TVA scenarios include substantial amounts of both solar and wind resources; average 
renewable generation capacity factors are about 40% in system peaking events and 50% in low load events. 
Because the Duke Energy analysis includes mostly solar resources, the average renewable generation capacity 
factors in the system peaking event and the low load event are lower, about 35%. 
2 Three hour ramp rates were also calculated for a portion of the analysis, but the results were not sufficiently 
different from the one hour ramp rate studies to suggest any benefit to more extensive study. 
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One example of each episode was selected for each utility. Coincidentally, for all three utilities, the 

August 7-10, 2007 episode was selected as a highly challenging peaking event. For the low load event 

with high renewable energy generation, the most challenging episodes for each utility occurred in April, 

but on different dates in 2011 and 2012. Net load curves are provided for each episode, at varying levels 

of renewable energy (including both wind and solar resources in each scenario, as described in Appendix 

A.) 

For each episode, data are summarized (see Figure 1 and Figure 2) for each of the utilities in the 

following categories. 

 System peak – the highest demand on the (net) load curve for the episode 

 Swing – the total ramp up from minimum (net) load to maximum (net) load; all values are 

provided on the net load curve graphs, with the minimum and maximum values summarized in 

the figures below 

 Ramp – the average ramp rate over the ramping period (e.g., swing divided by hours) 

These system level case studies do not consider market power imports or exports, nor do they include 

consideration of localized issues that might require dispatch or transmission contingency planning. 

Figures 3, 4, 5, 6, 7 and 8, illustrate the load impacts that varying levels of renewable generation would 

have on each utility under a summer peaking event versus springtime low-load event.   

Figure 1: System Peaking Event Case Studies 

 
System 

Peak 
(MW) 

Minimum 
Swing 
(MW) 

Maximum 
Swing 
(MW) 

Maximum 
Ramp 

(MW/hr) 

Duke Energy (North and South Carolina) 34,323 12,614 14,225 1,271 

Southern Company 36,029 13,100 13,674 1,140 

Tennessee Valley Authority 33,315 11,681 12,912 1,076 

High Renewable Generation Scenario 

Duke Energy (North and South Carolina) 32,223 10,125 12,632 902 

Southern Company 34,217 11,242 14,447 1,032 

Tennessee Valley Authority 31,034 11,335 14,180 1,013 

 

Figure 2: Springtime Low Load / High Renewables Event Case Studies 

 
System 

Peak 
(MW) 

Minimum 
Swing 
(MW) 

Maximum 
Swing 
(MW) 

Maximum 
Ramp 

(MW/hr) 

Duke Energy (North and South Carolina) 17,857 3,307 6,616 641 

Southern Company 21,062 3,405 7,702 804 

Tennessee Valley Authority 17,975 4,230 6,446 645 

High Renewable Generation Scenario 

Duke Energy (North and South Carolina) 17,857 2,220 5,616 891 

Southern Company 18,458 4,897 7,671 979 

Tennessee Valley Authority 14,432 3,229 7,395 975 
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Figure 3: Duke Energy (in Carolinas) Load Shape, Summer Peak Episode 

 

Figure 4: Duke Energy (in Carolinas) Load Shape, Springtime Episode 
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Figure 5: Southern Company Load Shape, Summer Peak Episode 

 

Figure 6: Southern Company Load Shape, Springtime Episode 
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Figure 7: TVA Load Shape, Summer Peak Episode 

 

Figure 8: TVA Load Shape, Springtime Episode 
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2. Statistical Analysis of Ramp Rates  
To place these case studies in context, the entire data set was examined statistically for individual 

resources as well as the combined resource scenarios. Ramp rates were calculated over 1-hour 

increments.3 This provided a broad view, considering hours in which renewable energy improved system 

ramp rates as well as those in which ramp rates became more challenging. The vast majority of utility 

ramp rates, with or without up to the maximum 8 GW of renewable energy analyzed here, remain 

below 5% of total system capacity. The main result of adding renewable energy into a ramp rate analysis 

is that some hours have increased ramps, and other hours have decreased ramps.  

Because the utilities have similar peak loads and ramp rates, it was practical to apply the same simple 

analytic method to each utility. As discussed in Appendix A, due to limitations on available data, the data 

sets were different in size. 

 Duke Energy (in the Carolinas): 1998-2012, including 131,496 hourly records 

 Southern Company: 2003-2012, including 87,672 hourly records 

 Tennessee Valley Authority: 1998-2012, including 131,496 hourly records 

It should be noted that each of these utility systems is a dispatching authority, although each distributes 

power through affiliated utilities. 

Hourly ramp rates were calculated and sorted into seven bins for each utility. Hourly ramp rates with an 

increase or decrease in (net) load of less than 1,000 MW were considered “low ramp rates.”4 For each 

utility the low ramp rate represented 81-86% of the hourly ramp rates under reported historic system 

loads. Higher ramp (up or down) rates were grouped in increments of +/- 1,000 MW as illustrated on the 

graphs. 

For comparison with the system load baseline, net loads were calculated at increasing levels of 

renewable energy development. For individual resources, net loads were calculated for 1-5 GW of 

nameplate capacity. The study of ramp rates for individual resources included a total of twelve datasets 

(3, 4 and 5 distinct resource technologies for the utilities). A complete set of net load graphs was not 

completed after it became clear that the findings were repetitive. Furthermore, it should be re-

emphasized that it is not likely that a utility would develop several gigawatts of capacity from a single 

renewable energy technology, leaving the others undeveloped. 

For solar power, all analyses showed that for the first several gigawatts of solar power development, the 

number of hours with high ramp up rates declines somewhat, while the number of hours with high ramp 

down rates shows a slight increase. Overall, for solar power, up to about 4 GW of development can be 

supported with operating ramps being either slightly improved or about the same as the system without 

solar. Beyond 4 GW, ramp rates on the system slowly increase in overall challenge but there is no point 

at which dramatic changes in system ramp rates occur. This trend is illustrated in Figure 9, which 

                                                           
3 Three-hour ramp rates were also calculated for a portion of the analysis, but the results were not sufficiently 
different from the one-hour ramp rate studies to suggest any benefit to more extensive study. 
4 This “low ramp rate” value was selected arbitrarily and is not based on any particular system operation standard. 
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considers fixed mount solar systems over an hourly interval. Similar findings occurred for solar tracking 

systems, for three-hour ramp rates, and for other utilities. 

Figure 9: TVA Hourly Ramp Rate, 0 – 5 GW Solar Fixed Mount Systems 

 

Wind energy presents a more significant operational challenge in terms of ramp rates. However, at the 
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GW of wind power to its system from all sources (whether regional, interconnected via existing AC 

transmission, or imported via new HVDC transmission projects) over the next decade. Other 
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decade. 
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allow for other resources to be ramped down more gradually (after a brief curtailment, the wind 

generation would be restored to full output). Similar, but somewhat less significant effects occurred for 
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Figure 10: TVA Hourly Ramp Rate, 0 – 5 GW HVDC Wind Imports 
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Figure 11: TVA Hourly Ramp Rate, 0 – 8 GW Renewable Energy Scenario 

 

The results for Southern Company, as illustrated in Figure 12, are similar to those for TVA. The main 

impact on ramp rate frequencies relates to the introduction of HVDC wind resources, but the impacts 
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Figure 12: Southern Company Hourly Ramp Rate, 0 – 7.3 GW Renewable Energy Scenarios 

 

For Duke Energy, as illustrated in Figure 13, ramp rate frequencies are not affected very much since the 

project did not have access to wind data for resources available to the Duke Energy region. The 

performance of the Duke Energy scenario is similar to solar (see Figure 9 for example) because of the 

emphasis on solar energy resources. 
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Figure 13: Duke Energy Hourly Ramp Rate, 0 – 7.3 GW Renewable Energy Scenarios 
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